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Block 20 cont'd

Ile Jellybean Machine in a scalable MIMD concurrent processor consisting of special-purpose RISC pro-
cessors loosely coupled into a low latency network. The problem with such a machine is to find a way to
eficiently coordinate the collective power of the distributed processin elements. A foundation of efficient,

powerful services is reqired to support this "stem.
To provide this supportive operating environment, I developed an operating system kernel that serves

many of the initial needs of our machine. This Jellybean Operating System Software provides an object-
based storage model, where typed contiguous blocks act as the basc metric of storage. This memory model
is complemented by a global virtual namin wc]eme that can reference objects residing on any node of the
network. Migration mechanism &How object relocation among different nodes, and permit local caching ofcode. A low cost process contro system based on fat-allocated contexts &How@ parallelism at a significatly

fine grain (on the order of 30 instructions per task).
The system services are developed in detail, ad may be of interest to other designers of fine grain,

distributed memory processing networks; The initial performance estimates are satisfactory. Optimisations
will require more insight into how the machine will perform under real-world conditions.

. . . .
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Chapter 1

Introduction

I am the people the mob - the crowd - the mass
Do you know that all the great work of the world is done through me?

- CAWL SANDBURG, in I Am the People, the Mob (1916)

Power is the great aphrodisiac.

- in The New York Times (January 19, 1971)

Concurrent processing is becoming a progressively more popular field in computer

science. The vision of harnessing previously undreamt of computational power at a reason-

able cost is leading the drive. By connecting many moderately powerful microprocesors in a

communications medium, system designers hope to be able to take advantage of the collec-

tive power of the architecture to solve tasks that were previously time or cost-prohibitive.

Unfortunately, the eager concurrent system designer soon finds that many issues

are still unresolved. Though people have a fairly good grasp of ways to build successful

sequential machines, it is less dear how to build optimal, or even acceptable concurrent

systems. The designer is soon faced by a barrage of questions that are difficult to answer.

"What grain of parallelism should be supported?" "What level of functionality should the

8



CHAPTER 1. INTRODUCTION 9

processors provide?" "How should the processors communicate?" "How tightly coupled

should the processors be?" "How should memory be managed?" "How should the load be

distributed?". Many research groups are attempting to answer these questions at this very

moment.

Some insight into concurrent architectures has been gained over the years, and

the current directions of research reflects the knowledge gained. Multicomputer networks

(sometimes caJpd "ensemble machines") are one direction that concurrent systems research

has taken. This genre of machine connects relatively conventional microprocessors via an

automatically routed network. The design is advantageous because it takes advantage of well

understood sequential processor technology for the processing nodes, and the performance of

the system can grow proportionately with the number of processors1 , providing 8ecalebt.

For the past two years, the Concurrent VLSI Architecture Group at M.I.T. has been

designing a concurrent processing network, christened the Jellybean Machine, under the

direction of Professor William Dally (Dal86c]. The goal of the Jellybean Machine project is

to design a scalable concurrent processor out of low-priced (jellybean) parts, that efficiently

supports an object-oriented execution model. The processor is targeted at both symbolic

and numeric applications, and will be programmed in high-level, object-oriented languages.

It hopefully will serve as a succesful example and a test bed for advanced concurrent -ytems

research.

1.1 Scope of Thesis

This thesis rep.. t describes the design and implementation of an operating system prototype

for the J-Machine. The operating system was required to support a global nameypce across

the distributed processors, allocate memory in an object-baned storage model, support

'at |eut up to some point.
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inter-processor communication, provide system services to control code execution, object

migration, and an object-oriented calling model. It also provided a perch from which more

advanced issues in system design could be studied.

1.2 Highlights of Contributions

In the course of the design of the J-Machine operating system, several ideas were developed

that may be of special interest to the designer of muticomputer networks.

9 In section 3.4, I describe a virtual addressing system that resolves objects names
across distributed nodes by a mechanism known as hometown addremuin. This scheme
delegates to object birthnodes the responsibility for knowing current object residences,
permitting object migration. An accompanying mechanism of "hints" is provided to
improve performance.

9 To simplify the hardware with minimal cost in flexibility, we have developed an ex-
plicit, one time virtual translation scheme via the XLATE machine instruction, that
converts a virtual address to a physical one. Retranslation is provided for automati-
cally by fault handlers.

* Chapter 5 describes a low overhead code execution model that supports inexpensive
remote procedure calls, local caching of code, and convenient suspension and resump-
tion of processes.

* Section 5.4 describes a system for fast context creation that involves the re-use of old
context objects. This is an important optimization based on the short life and rapid
freqency of context allocation.

* Section 5.6 outlines a simple and fast, resource distribution mechanism that limits
bottlenecks and cross network traffic by dynamically creating a type distribution tree
for the resource.
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1.3 A Closer Look At The Jeilybeau Machine

The J-Machine is composed of many custom RISC microprocessors called MessAg-Driven

Processors or MDPs. These processing elements have small, local memories and are con-

nected. in a loosely coupled network. Inter-node communication is provided via message

sends tha" are automatically routed to the proper destination nodes.. A virtual object-

based memory abstraction is built over the distributed nodes providing a uniform global

namespacs. Various levels of low-cost execution control provide a reasonably fine grain

of concuriency (on the level of 30 instruction procedures). An object-orie$ted execution

model is b---'.t upon this fine-grain execution model. The rest of the system impjements

miscellaneous system services ad mechanisms to improve performance.
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1.4 Background

Concurrent architecture design has been seriously studied for at least the past fifteen years,

but there is still much to be learned. The various visions of machines, operating systems,

and target applications are so diverse, that few definitive statements can be made.

We see SIMD parallelism, promoted by vector operations as seen in the Cray. More

complicated architectures like the Connection Machine [HU185], and systolic array processors

like the Warp [Kun82] are alternative approaches, providing fine-grain concurrency with

repetitive processing while permitting reconfiguration. MIMD architectures are just as

diverse. There are extremely fine-grain dataflow machines like the Manchester Machine,

Sigma-1, and the MIT Tagged-Token dataflow Machine [Aea.80, bus-based shared memory

architectures like the IBM RP3, Inmos Transputer, and C.mmp [WLH81], multicomputer

networks like the Cosmic .be [Sei85] and Cm* [OSS80] and distributed systems like System

R* [Lin80].

The Jellybean Machine, while borrowing ideas from successful research endeavors,

has goals unique enough to gain a somewhat different character from other machines of

its genre. It communicates via message passing and addresses only local memory, as in

the Cosmic Cube [Sei85J and the Medusa system (OSS80]. On the other hand, these two

systems control execution by a system of pipes and locks, where processes wait for data to

arrive via messages. The J-Machine, instead, uses message sends to schedule processes, and

not to provide socket-to-socket communication. State manipulation doesn't involve explicit

connections between running processes. Instead, return values are propagated around to

slots in contexts and code is executed when results arrive in a more "functional" manner.

Many systems aiso have virtual memory and some systems use an object or segment

based storage model [WLH81] as does the J-Machine, but the emphasis is slightly different

in our design. Where most systems use a virtually addressed, multi-level memory system

AP
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to expand primary memory and provide relative address mapping, the J-Machine uses a

virtual addressing system to provide a global namespace across all nodes and to provide

convenient access to objects as the primitive memory metric. This Is more similar to large,

complex-distributed systems such as IBM's distributed database, System R* [Lin80] than

conventional parallel processors.

Finally, the J-Machine targets itself to a high-level programming environment. The

RISC processing node, called the Message-Driven Processor [HT88), provides a fast, power-

ful substrate for the execution of high-level languages, such as Smalltalk. There are several

architectures designed for the eficient execution of high-level language applications, such

as the Symbolics Lisp Machine and the SOAR Smailtalk processor (Ung87j, but very little

work has been done targeting concurrent processors to high-level languages.

1.5 Organization

The rest of this report will discuss the structure of the Jellybean system. Chapter 2 provides

a high level layering of the Jellybean system - from single processing node hardware to the

high level programming of the entire concurrent processing network. Chapter 3 describes

the memory management and addressing system. Chapter 4 discusses the m hi.ne as a

distributed system supporting object migration to balance load. Chapter 5 explains code

execution on the method level, and 6 details the object-orieted calling extensions. Storage

reclamation issues will be introduced in chapter 7. Chapter 8 discusses some of the services

provided to support high-level language constructs and to control code execution. Chapter

9 describes *, prototype operating system implementation noting its successful as well as

not-so-successful features, and discussing some of the difflculties and quirks faced by the

system designer. The report concludes with a performance evaluation and summary in

chapters 10 and 11.
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Chapter 2

The Execution Model of the

Jellybean Machine

These unhappg times call for the building of plans
that build from the bottom up and not from the top down

- FRANKLIN DELANO ROOSEVELT, in his April 17, 1932 Radio Address

The Jeilybean Operating System Software (JOSS) is built in a layered manner where

each layer provides a different model of functionality to the machine. Figure 2.1 attempts to

describe this layering, and what new functionality each layer provides to the entire system.

At the bottom of the figure lies the base processor and boot code. At this stage,

the processing node can be initialized, and can run independently as a limited micropro-

cessor. The addition of system call and fault handlers provide a level of system services

and robustness to the microprocessor, allowing it to allocate memory in an object-based,

virtually addressed manner, and to handle various types of exceptional conditions at run

time. These first two levels of the Jellybean system build up the abstract processing node

14
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Execution Model Functionality

High Level Languages Us" s Iameams

Intermediate Code h = b S

SEND Message Handler Cam/shktw clm me"

CALL Message Handler . M.hod ¢C-,-

Comnunietlon
Primitive Message Support Diadbuted Nau.a.p

Cowcune computing
System Calls Obj.t.ed memo .focMio.

and opmahI.e & gensatl

Fault Handlers vAmw% Nmpoe

Simple I& telou -t, tagged, l"W mmory
Machine Code r ut uV .ic

FIgum 2.1: Layering of Jellybean System
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capable of executing machine code and performing a set of system services.

Concurrency is provided as the next level of functionality by the introduction of

primitive message handlers. Each processing node has the ability to send messages to any

other node, where a message is simply a physical address to start running on a foreign node,

followed by routine-specific data. Thus, a Jelybean primitive message is actually just a way

of changing a program counter of a remote node. A set of common operations can be placed

in identical physical memory locations on each node, so that an operation can be run on any

node by mailing that routine's address to the node. The operating system provides a small

set of primitive message handlers to perform common operations which reside in the same

locations on each node. With this small set of locked-down routines, the machine gains the

ability to compute concurrently, to use a global addressing abstraction over the physically

distributed memories, and to perform some amount of object migration and other control

of resources.

Two special primitive message handlers are special, in that other system services are

built on top of them. The CALL message handler provides a mechanism for starting code

contained in virtually-addressed relocatable objects, rather than just code that resides at

locked-down physical addresses. This provides a convenient way of packaging objects and

supporting remote procedure calls. The SEND message takes the code execution mechanism

to an even higher level, and provides for a dispatch-on-type calling model as used in object-

oriented systems like Flavors or SmalItalk.

The final two layers of the system are the interfaces for the programming models.

The Jellybean Machine under this highest level of abstraction appears to the user a system

to run high-level languages like Smalltalk.

The rest of this chapter will go into the abstractions in more detail, describing what

( functionality each level of the machine provides. It may be helpful to refer back to figure

2.1 as you read the following sections.
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2.1 The Processing Node

Each node of the Jellybean multiprocessor (a Meuope-Drven Processor) is a tagged-

architecture microprocessor with a small on-chip memory with separate register sets for

operating at two priority levels.

2.1.1 Machine Code

The machine code interpreted by a Mesnge-Driven Processor (MDP) is a simple 3 operand

instruction set [HT881. Code is executed sequentially, ad changes in control are provided

by simple conditional and unconditional branches. The instruction stream is accessed via

two registers, one that points at the base of the code block (AO), and one that indicates

the current offset into this block (IP).

2.1.2 System Calls

The processor also has a small fixed length stack, and a mechanism to make system calls.

This provides us with the ability to change control to common subroutines, and easily restore

execution upon return. The addition of the system call machinery gives us the ability to

provide several extensions to the processor in terms of system services written in machine

code. Hep manapgment, ad an object-based memory allocation model are provided with

system calls, as are the mechanisms to address these objects with relocatable, virtual IDs.

2.1.3 Fault Handlers

Similar to system calls, the MDP also contains a fault handler table providing software

routines to run when instructions fault because of various exception conditions (tag mis-

matches, addressing past segment, integr overflow, translation buffer lookup miss, etc.).
W n a/When a fault occurs, the IP is pushed onto the stack, and the appropriate fault routipe
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(found in the exception vectors table) is run. An address of each fault handlers is placed

in the exception vector table by software initialization. The addition of the fault handlers

gives us several advantages in our quest of an object-oriented concurrent processor. We can

use tag checking to support optimistic code generation and a type of "generic operation"

approach on the machine code level. The fault handlers also provide us the ability to effi-

ciently implement virtual ID lookup via the XLATE instruction. The fault handlers will be

described in more detail later when the entire system has been more thoroughly explained.

Since both the system calls and fault handlers are supported by a software initialized

vector table, the processor can be "reshaped" into a different type of machine by replacing

the ROM code that sets up this table. Only the instruction set is fixed, allowing the MDP

processing node to be used as a basis for various alternative concurrent processing system

paradigms.

2.1.4 The Basic Node of Computation

With what we have described so far, our processor is a sequential machine, able to be

executing in one of two priorities. It refers to its instruction stream using physical memory

base and offset registers. The addition of the system calls provides an interface to OS

services, such as those to allocate memory, generate virtual object IDs and to manage object

ID to physical address translation. The fault handlers permit us to develop "optimistic"

code, where a normal, error-free execution will proceed rapidly, and we only pay the price of

software execution if an error condition occurs. The fault handlers are also used to support

a fast virtual namespace, where translation can be as fast as the XLATE instruction.

The sum is a flexible, object-based microprocessor that will serve as our basic node

of computation as we venture into the realm of concurrency.
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2.2 The Concurrent Processor Model

By providing mechanisms for node-to-node communication, our machine becomes a mul-

tiprocessor, called the Jellybean Machine. Many MDP processing nodes (as well as other

potential nodes such as floating point processors and memory nodes) are connected together

in a network. Communication between the nodes is provided by the MDP SEND instruction

which injects messages into the network. The messages are routed by routing hardware to

the message queues on the destination node.

Messages received by an MDP processing node consists of two parts, a message

header which contains the address of the primitive messnage handler to run, and a sequence

of message specific data words. The header of the message acts in effect like a process

descriptor for providing efficient mesage execution. When a message arrives at the specified

node, it lands in the destination node's queue. The queue acts as a FIFO scheduler of

primitive message processes. When the message moves to the head of the queue, the MDP

executes the message by setting the instruction pointer register to point to the primitive

message handier whose address is in the header of the message.

Several useful system services are written as primitive message handlers. Examples

of primitive message handlers include those to make a new object on a node (NEW.MSG)

and to request a copy of a method from a node (METHODREQUEST.MSG).

With the addition of primitive messages, we have the ability to process concurrently,

and to support a distributed namespace. We can now extend our virtual memory system

to support naming of objects, not just in the local memory, but on any node in the entire

network. With a distributed namespace, we gain flexibility of resources. We can migrate

objects as we need them to balance load and to free up memory.



CHAPTER 2. THE EXECUTION MODEL OF THE JELLYBEAN MACHINE 20

2.2.1 Methods and the CALL Message

Up to this point, we have only been able to run foreign code that resides at fixed physical

locations. We desire a more flexible mechanism for dealing with blocks of code, such as those

that will be output by compilers. Since we already have an object based storage model,

it would be very convenient to store code routines in objects and provide a mechanism for

their execution. We call code routines stored in virtually addressed, relocatable objects

methods to differentiate them from physical locked down code sequences. We provide a

mechanism to start these methods executing by writing a primitive message handler called

the CALL message handler. When a CALL-MSG starts executing on a node, it runs the

method indicated in the message argument. This allows us to have a flexible system of

remote procedure calls.

2.2.2 SENDing Selectors to Objects

The final operating system layer in our quest for an object-oriented execution model is

the SEND.MSG message handler. A SEND-MSG consists of a selected generic operation,

represented by a unique symbol called a selector, followed by the object(s) that the selector

acts upon. If we wanted to send the DRAW selector to an object (say a triangle), we

would SEND a SEND.MSG message to the node the triangle object resides on, passing the

selector DRAW, and the virtual address of the triangle object receiving the selector (called

the receiver). When the SEND-MSG handler gets executed, it determines the appropriate

method to run, and then remotely calls the procedure by sending a CALL-MSG message

to this method which then draws the triangle.

In order for this system to work it is necessary to maintain certain system tables

that map pairs of selectors and object classes with the virtual ID of methods to perform

the desired information. It is also necessary to insure that semantically indentical selector

operations get the Aame selector symbol. In other words, all PLUS,.erations must get the
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same symbol representing +. The exact mechanisms of the class/selector system will be

described in more detail in chapter 6.

2.3 High Level Language Model

For the final part of our tour of the Jellybean Machine, let us step back once more, and

view the machine from the perspective of the programming languages that will be used to

write user programs.

2.3.1 Intermediate Code

To provide a uniform target language for compilers, we have specified an intermediate

language called i-code. This language has a simple set of operations, and a simple manner of

referencing operands. By passing the send code through a code generator and a linker/loader

we can store actual MDP machine code on nodes. The i-code level of the system provides a

convenient entry point for various compilers that necessitates no knowledge of the underlying

layers. All interaction is via the protected subsystem of the i-code interface. This interface,

in effect, provides an abstract i-code machine that can be of use in many different machine

configurations. Implementations of this interface on different machine architectues would

provide a convenient way to reuse compilation tools and compare system performance.

2.3.2 User Languages

The user language model is what would be seen by the user of the Jellybean Machine. He/she

would be faced with the language interaction shell and would see none of the internal layers

that compose the system. The currently supported user language is a prefix notation form

of concurrent Smalltalk [DC]. Other languages, such as a Lisp with flavors should also be

possible.



Chapter 3

Memory Management and

Addressing System

Work without hope draws nectar in a sieve
And hope without an object cannot live

- SAMUEL TAYLOR COLERIDGE, in Work Without Hope

Oh call it bl some better name
For friendsip sounds too cold.

- THOMAS MOORE in Ballads and Songs: Oh Call It by Some Better Name

The Jellybean Machine, targeted for object-oriented applications, needs to have an

object-baed storage model. This chapter sketches the machinery that interact to provide

this model. The mechanisms basically consist of two parts, (1) the services to allocate and

deallocate contiguous blocks of physical memory, and (2) the virtual addressing abstractions

that make objects the basic unit of storage. This virtual address allows object relocation

and provides a way to reference storage on foreign nodes. Virtual naming and physical

allocation systems combine to form an object based programming system.

22
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NEW
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TRANSATIO GENRATEALLOCAE
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ROTNSADDR~ESS MEMORY

Table IDHeap

Figure 3.1: Schematic Model of the Memory System

At the heart of the object based system is the NEW system call, which creates a

new object. This routine utilizes the 3 object system subsystems, the translation manager,

the name manager, and the memory manager. This interactiott dt the various systems is

shown in figure 3.1.
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3.1 "Freetop" Contiguous Heap Allocation

Each node of a Jellybean Machine has its own local memory that can be accessed very

rapidly. Part of this local memory is reserved as a heap to allocate blocks of memory from.

Heap allocation is done in a straightforward "freetop-next" manner. Memory is allocated

starting from the current top of free memory, and the freetop pointer is moved past the

block allocated. The ALLOC system call handles the allocation requests.

3.2 Compaction is Fast

Deletion of objects fragments the heap leaving unused "holes" in the heap. We reclaim this

storage by sweeping objects down toward the base of the heap, to fill up the blank space,

with the freetop following accordingly. Since each local memory is small and fast, and

each processor can sweep in parallel, compaction takes very little time. Figure 3.2 shows a

process of heap allocation, deletion, and compaction.

3.3 Physical Base/Length Addressing

Blocks of memory are described by physical base/length values supported by the processor's

primitive ADDR data type. The base is the starting address of the block of memory, and the

length is used for access bounds checking. The format of an ADDR tagged value is shown

in figure 3.3. The tag of the physical address word is a unique number ADDR representing

a physical address value. The R bit is used to sjecify that an address value points to a

relocatable object. The I bit specifies that the address is now invalid. Both of these bits

are used for the implementation of virtual addressing.
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Figure 3.3: A Physical Address Word Format
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3.4 Virtual Addressing Extension

Having physical addresses only allows us to access objects on the current node. It provides

us no mechanism for naming objects on different nodes. For this reason and because it eases

relocation and provides an object-based storage model, we extend our addressing system

from the local, physical namespace provided by the physical ADDR values to a global,

virtual namespace using virtual object IDs. A virtual ID is a global name for an object.

3.4.1 Creating New Objects

Objects are created by the NEW system call. The system call allocates memory with the

ALLOC call, reserving the first two words of the allocated block of memory for object header

information. Once the block of memory is allocated, a unique, virtual ID is generated with

the GENID system call. The first word of the block of memory is initialized to contain the

length and data type of the object, and the second word is set to the virtual ID. Finally,

a virtual ID to physical address binding is made for the object so we can find the physical

location given the ID. The format of an object is shown in figure 3.4.

To manage this virtual namespace efficiently, we need some operating system and

hardware support. First of all, the processor provides a matching ID register for each

physical address (A) register. These ID registers hold the virtual IDs for the objects whose

physical addresses are in the A registers. We also provide a translation buffer as we will

discuss shortly.

3.4.2 Virtual Memory System Calls

The GENID system call generates a new serial number, unique on the current node. The

(" current implementation encodes a virtual ID in two fields, a node-unique serial number, and

a node number component representing the node number an object was created on. The
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W wfqt of objet data

Figure 3.4L- The Structure of an Object
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Figure 3.5: A Virtual Address Word (ID) Format

format of this virtu4l ID is shown in figure 3.5. There are also several utility routines used

to manage the virtual --+ physical translation table (called the Birth/Residence Address

Table, or BRAT). These routines add, lookup, and remove bindings from the translation

table. They are implemented by the extended system calls BAT.ENTER, BRATXLATE,

and BRAT.PURGE respectively. Finally, we provide the NEW system call to allocate and

install a new object. This service allocates physical memory, generates a virtual ID, installs

the virtual --, physical binding in the BRAT, and returns both the ID and the address. The

NEW system call is to the virtual addressing model as ALLOC is to the physical addressing

model.

3.4.3 Translation Buffer

To speed up translation, each processing node has a 2-way set-associative translation buffer,

and the accompanying ENTER, XLATE, and PURGE machine instructions. The XLATE

instruction will fault if no binding is found in the cache, and a software exception handler

will be run to resolve the name.

i.
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3.4.4 Automatic Retranslation

To support maximum efficiency in normal case situations, the processing node provides an

"invalid" bit in each address (A) register. If this bit is set, it signifies that the ID and A

register have values that are no longer consistant. Any access of an invalid A register will

cause a fault handler to be run which will retranslate the ID register into the A register

and continue. This way we can be "lazy" and retranslate invalid bindings only if needed.

3.5 Summary

Physical block allocation is used to reserve segments of memory. Virtual IDs are associ-

ated with these blocks of memory, and bindings are formed, to provide an "object-based"

allocation model. This object allocation model provides the following benefits

e An abstract memory model, where "objects" are the primitive metric of storgae rather
than physical addresses.

e A location independent memory model with indirection through a translation table,
allowing ease of relocation.

e The ability to represent the data types of objects.

9 The introduction of a gloa namespace where we can refer to objects residing on any
node of the network.



Chapter 4

Distributed System Support

I pity the mn who can travel from Dan
to Beersheba and cry, 'Tis all barren!

LAWLENCE STERNEB, in A Sentimental Journey (1768)

In the previous chapter we developed a object based allocation model and a global

naming system. With this functionality, we gain much greater flexibility. We take this

system one step further in this chapter, as we describe a mechanism to migrate objects

from node to node. This added ability requires a few extensions to the virtual naming

model presented in the previous chapter.

4.1 The Idea

In the previous naming model, virtual IDs were bound to physical addresses. Since objects

were not allowed to migrate, they were forced to always reside on their birthnode. Now that

objects are allowed to emigrate to different nodes, we need to expand our name resolution

( system. In addition to virtual --* physical bindings we add a virtual -- node-number

binding semantically representing a "hint" that the object in question now resides on a

31
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no&. #1 ae#
EI-+aods #2- MI

Figure 4.1: An Example of Hints

different node number. Figure 4.1 shows that node #1 has a hint that an object is on node

#2.

4.2 Chaining of Hints

These node number "hints" indicate another node to look on for the object in question. The

current implementation allows chaining of hints (although cycles will never form). If we ever

follow a path of hints and find no binding for the object ID, we then query the birthnode

which is required to have a path to the object in question. Figure 4.2 is a snapshot of a

system where a chain of hints has formed to an object.

A question then arim as to how long to let these chains of hints be. Some distributed -

systems, such as System R* [LinS01, only allow paths of length 1, i.e. one hint. If the
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aod.#-nod #2 no&eS
ID-ode #2 ID -+ mde#5 Mi- nD-ods #

nod #4P ma ode #0

Figure 4.2: Chains of Hints

Ic
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object is not one hint transition away, the system then defaults 'to the birthnode where

the location of the object is found, and the previous incorrect hint is updated. However,

in our system we choose to have multiple hints because objects may migrate quite a bit,

and this would increase the number of birthnode accesses. Performance could significantly

degrade if a popular object moved quite a bit (as we would expect popular objects to do).

If we notice in later performance experiements, that chains of hints become commonplace,

adding latency and unnecesary network traffic, we can adopt one of 2 solutions, (1) only

allow one hint or (2) collect and update old hints periodically.

4.3 Calculating Likely Nodes From Object IDs

The operating system provides a system call for finding a likely node that an object resides

on. This ID.TO.NODE call takes the virtual ID of the object and returns a node number.

It does so by the algorithm charted in figure 4.3. It works in the following way. The virtual

ID is looked up in the translation table. If it is not there, we have no idea where the object

is, so we check the birthnode. If there is a binding, but the binding is to a hint (an integer

value), we return this hint as the probable residence node. Finally, if the binding is to a

physical address, the object is local, and the local node number is returned.

4.4 Virtual To Physical Translations In The Migrant Ob-

ject World

Now that objemts are allowed to wander aimlessly across the nodes of the Jellybean Machine,

virtual to physical address translations are necessarily slightly more sophisticated. Three

conditions can occur when we attempt to translate a virtual ID into a physical address.

1. We find a physical address value for the binding

2. We find a hint to where the object currently resides
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Figure 4.3: Flowchart for the ID..TO-.NODE algorithm
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3. We find no binding for the object

Case 1 is the normal situation. The physical address associated with the object ID is

returned. Case 2 implies that the object is rumored to be on a foreign node. We then

send a request to this node asking that the object be shipped here for processing, and we

suspend our process onto a wait list. Case 3 occurs when a node has no idea where an

object resides. In this case, we send a request to the birthnode asking for the object. If the

birthnode doesn't know where an object is, it loops, mailing messages to itself, assuming

the object is in a state of transition somewhere.

4.5 Bouncing Objects

Note that this method of finding data objects may cause them to bounce around from node

to node, as different processors wish to compute on them. This is the direct result of several

design decisions: (1) each processor executes only one task at a time, (2) memory is not

shared among processors, (3) mutable data objects are not cached, and (4) an object's data

lies entirely on one node. The first and second decisions are fundamental to the design of

our machine. We chose the grain size and memory model to provided a moderately fine

grain, highly scalable processor. We chose not to do object caching because it is expensive

to do in software, and is difficult on a network based memory model. It may be possible to

provide coherent caching in the future however. The final restriction, that an object's state

is contained on one node only is for simplicity's sake, and can be at least partially lifted by

the introduction of "distributed objects" described in a later section.

So, with these characteristics in mind, it becomes important for us to try to prevent

unnecessary "pingine of objects from node to node. One way this is done is by "sending

work to the object" rather than 'sending the object to the work". Unfortunately, this is

difficult to do in the general case due to problems with transferring processor state. As a )
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compromise, we set the following policy.

1. If we were sending a selector to an object, and the object is not local, we forward the
selector to the location of the object 1 .

2. If we were accessing a non-local, immutable object, we halt, saving our process state,
request a copy of the object, and restart execution when the copy arrives.

3. If we were accessing a non-local, mutable object, we halt, saving our process state,
move the object here, and restart when it arrives.

This policy reduces the severity of the "pinging" problem, because work tends to accumulate

at the object, while at the same time, allowing the object to move if it has to.

4.6 Details About Object Migration

This section formalizes the mechanisms provided to migrate objects. When we try to access

a non-local object, we mail away to request a copy of the object or to move the object

(depending on whether the object is immutable or mutable, respectively) 2. When we wish

to request a non-local object, the following steps are taken:

1. The processor state is saved in a context object, and the context is marked waiting
for the ID of the object being requested.

2. The context is placed in a resource wait table that indicates processes waiting on
objects.

3. A MIGRATE.OBJECT message is sent to the best guess residence of the object,
asking it to be migrated to the requesting node, and the process suspends, able to
execute the next message in the queue.

4. This MIGRATE.OBJECT message is forwarded down the chain of hints. If it lands on
a node with no binding for the ID in question, the search continues at the birthnode.
Finally this message arrives at the node the object resides on, and the message handler
is run.

5. If the object in question is marked unmovable, then the message is sent back to
the start of the queue, otherwise the message handltr decides whether the object is
mutable or not, and acts depending.

e If it is mutable the bindings are removed from this node, the object is mailed in
an IMMIGRATE.OBJECT message back to the requesting node, and the object
is deleted.

('The class/selector late-binding activation model is discussed in detail in chapter 6.
2Since a process cannot be interrupted by a same priority message, it does not suffer from livelock and

can always make headway:
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e If-the object is read-only, the data is mailed in an IMMIGRATE-COPY message
back to the requesting node.

6. These messages eventually arrive back at the requesting node.

" When a IMMIGRATE-OBJECT message arrive&, the mesmge handier (1) alo-
cates the object, (2) marks the object unmovable (until It can updte the birthn-
ode, to prevent a race condition where hint updates m occur out of sequence),
(3) copies the daft into the object, (4) mils a NOW .- ESD .AT ess to
the previous node of residence, and (5) calls the RESOCAE.ARRIVED system
call, which will queue the retart of the waiting conteos.

" When a IMMIGRATE-COPY message arrives, the handler (1) allocats the ob-
ject, (2) marks the object header as a copy, (3) binds the old I'D to this ue* ob.
ject, (4) copies the data Into the object, and (5) calb the RESOURCE.AU VD
system call, which will queue the restart of the waiting contexts (copies can be
collected when storage runs low).

7. The NOW.-ESIDING.AT message makes a hint from the current node to the new
node, and mails a UPDATE.BIRTHNODE message to the birthnode 4f the object,
telling it of the object's new location.

8. The UPDATEBIRTHNODE message makes a hint to the new location and mails an
OBJECT-MOVABLE message to the location of the new object, passing its ID.

9. The OBJECT.MOVABLE message marks the object movable. Now the object is free
to move again.

Figure 4.4 shows an example of this process.

4.7 Summary

The addition of a mechanism for object migration adds much more flexibility to the Jelly.

bean system. Without imposing policy, the migration and copying system provides the

basic mechanism for resource sharing. To alleviate name resolution bottlenecks at object

birthnode, I designed a system of cycle-free hints to indicate whee objects currently lie. It

is not clear how long to allow these chains of hints to be. Long chains of hinti would cause

unnecessary network traffic and increase latency. Having single hints would Incresse the

number of birthnode accesses and require mechanisms for removing old links. The system

currently supports chains of hints.
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Figure 4.4: Step-by-step Object Migration
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A Virtually Addressed Code

Execution Model

They shall mount up with wings as eagles;
thes ehall run, and not be weary, and

they #hall walk, and not faint

- The Holy Bible, Isaiah, 40:31

At the most primitive level, we could execute physically addressed blocks of machine

code by directly setting the registers, or by sending primitive messages. Unfortunately,

we have no mechanism to allocate or relocate these blocks of code, they are physically

addressed and sedentary. This chapter presents the system mechanisms that interact to

provide a more flexible, but low overhead model for code execution by taking advantage of

the virtually-addressed, object-bued storage model we developed in the last 2 chapters.

I will present (1) the advantages of an object-based code model, (2) the mechanisms

for executing object-based code, (3) local caching of methods, (4) contexts, suspension,

and waiting for resources, and (5) efficient ways of distributing code models across a large

network.

40
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Io w~k~ Method Opt iqi
Addtm -1I Arp

Figure 5.1: Format of the CALL Mesup

5.1 Taking Advantage of Object Stomp

By taking advantap of the object storoe sad namig Systme we 6svel , we an able

to wrap threads of code inside objects &&d an all of the kmdw of tho i u powerful

object-bised abstraction, of which a few are: (1) dynamic allocatim, (2) reloca , even

acros nodes, and (3) convenient samins and name resolution. This view 9f code blocks as

objects (or metoafi which is what we call code blocks that are wrapped in objects) allows

us to consider mor advanced calling models, such as the ability to convea ntly support

remote procedure calls (RPCs) and the flexibility to "send the work to the data" rather

than just the typical mechanism of "brizng the data to the work".

5.2 An Overview of the CALL Mesage

Ignoring for the moment the qeestion of Initially creating methods, let's canc= on the

mechanisms needed to exmete them. The opeatinl system piovidu a PrM1tlve M P

haadler for a CALL meuagp. To ar method ruuning, we mal C4,L Pepi $ the

node the method resides on', passing as arguments the virtual ID of **#W sp uste,

'Sow bWl thi m s of the Yliual distaited umspa.. nm, we asp W WOt tq V*

beat Xsew wbm methed resides.
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and any data the method expects as parameters. The format of the CALL mesage is shown

in figure 5.1. When the CALL message arrives at the node it first checks if the method is

here. If so, the code is started. If not, rather than forward the message to the birthnode,

we note that

1. Methods are immutable, and therefore can be copied

2. Certain methods might tend to be called often from many nodes

and adopt a policy of copying the method to this node. This way we provide local copies

on many nodes (these can be periodically purged by some appropriate stategy to free up

memory).

Once the method is on the node where the CALL message arrived, the message can

start up the method. It does that by

* Translating the ID of the method into its physical address

* Placing this physical address of the code block in A02

* Placing a 2 in the IP register

These steps will start the processor executing instructions from the method, starting at the

third word. We skip the first two words of the method, because these hold object header

information. The steps of the CALL message are schematically charted in figure 5.2. If

the method somehow relocates on us while we were executing, the process that relocated

the object will invalidate the AO register. When our process starts again, it will fetch

an instruction through AO and cause an invalid address fault. This will run an exception

handler to retranslate the method ID (in IDO) into the physical eddress (putting it in AO

again), and we will continue as if nothing had happened.

2 Ae alwrs .:ts the the base of the code currently exm1teduns thej .is in 668oh
whee thi vau i trested always as 0, regardlm what it holds. Te r . tdhel relate ofet Of
the prorasm counter within this code block starting at AO. (If we ae in absolute mode, the IP register acts
in efect On an absolute addase rather than a relative address, becaue absolute mode mahn the processor
pretea the v ae of AO is 0.)

pThs theld be c by heap cmpacto. or the me.h)d b migll to &othe node to fre 1P
space, among other reasons

.o
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5.3 Caching Method Copies

Since method code is immutable, we can cache methods, just as we can cache other read-only

data. To request a copy of a method we:

1. Allocate a context object to hold our processor state, so we can restart later
2. Copy the processor state into the context
3. Place the context in the resource wait table indicating that our context is waiting on

this requested method
4. Mail off, requesting a copy of the method
5. When the method arrives, it is placed on our node and our context is restarted

These cached copies will have the copy bit set in the object header so that the storage

reclaimer will know that this cached object is a duplicate, and can be purged if space is

tight. Let's now look in a bit more detail at contexts and this resource wait table, two

crucial mechanisms for supporting high level execution control.

5.4 Contexts

5.4.1 Why Do We Need Them?

Contexts are just objects that hold the important state of the processor, so the current task

cab be halted and later restarted where it left off. In addition, contexts can provide space

for local variables used in the task's computation.

5.4.2 How Do We Make Them?

Contexts are allocated by the NEW.CONTEXT system call. The call takes as an argument,

the number of additional variables needed, and it returns a context big enough to hold the

minimum necessary processor state plus the additional variables. When a process is done
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with a context, it should explicitly deallocate it with the FREE.CONTEXT system call.

Figure 5.3 shows the format of a typical context.

As with all objects, the first two words are used by the object manager. The next

three words are used to hold an offset to the processor state part of the context (for faster

restarts), a pointer to the next context in a list of contexts, and a value indicating that the

context is waiting on a particular resource. The context then contains some amount of user

reserved space foliwed by nine words of processor state. The minimal size of a context, with

no user space is 14 words.

5.4.3 How Do We Make Them ... Quickly!?

Since we expect contexts to be used very often, and since we want method startup costs to

( be small and methods to be short, we don't want a majority of our execution time to be

spent allocating contexts. To accomodate these constraints, we reuse old contexts rather

than allocating new ones each time. When a context is deallocated, it is placed back on a

free context list. The next time a context is requested, we try to re-use one from the free

list, since this will take only a few instructions.

However, contexts vary in size, and we wouldn't want to have to walk the list each

time to see if we have a context big enough to meet our request. So, we only save contexts

that meet a common size. This way, any time we request a context of this "common" size,

we can yank the first one off of the free list and use it. The format of the free context list

is shown in figure 5.4.

The first context in the free context list is pointed to by the CONTEXT.FREE-

LIST operating system variable. If no contexts are in the free list, the OS variable is set

to NIL. Each context in the free list points to the next context in the list by the context's

NEXT-CONTEXT slot as shown previously in figure 5.3. The final context in the free list

has its NEXT-CONTEXT slot set to NIL.
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5.4.4 Restarting a Context

The operating system provides one primitive message (RESTART-CONTEXT) and two

system calls (XFERID and XFER.ADDR) to restart a context. The system calls take

either an ID or a physical address of a context, and restarts it, copying the processor state

from the context to the processor registers. The restart context message takes a context ID

and transfers control to it by calling the XFER.ID system call on the context ID.

5.5 The Resource Wait Table

The resource wait table is a system data structure that indicates which cotexts are waiting

for which services. It consists of two parts. The first part of the wait table is a fixed size

associative table that binds resource IDs to waiting contexts. Figure 5.5 shows a portion of

a hypothetical table. We see several contexts waiting for ID1, one context waiting for ID2,

and the rest of the slots are empty. Empty slots are set to NIL. When a resource arrives,

the wait table is searched, and the contexts in the list bound to the ID are restarted.

Searching this table is fast, but unfortunately, we can not bound the number of

entries that try to occupy the table. At some time, we may run out of room. When this

happens, we resort to a slower form of data structure and link the contexts waiting on

resources in a list called the resource overflow list. If we don't find a binding in the table,

we begin searching the list of contexts. Since each context has a RESOURCE-NEEDED

slot, we can always tell what resource the context is waiting for. This provides us a way to

continue if the table becomes full. By sizing the table appropriately, it may be possible to

limit use of the overflow list to a minimum.

:24
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F~gur 5.5: Tle Resouce Wait Tabe
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Figure 5.7: A Parallel Resource Request Bottleneck in a 3 x 3 Network

5.6 Removing Method Caching Bottlenecks with Distribu-

tion Trees

The current scheme for method caching implies that in many caes, nodes wanting methods

will have to ask the birthnode of the method (or at leut the reskdence node) for a copy.

If many nodes simultaneously need the same method (as will likely happa& with highly

parallel execution), then the birthaode will be deluged with method requarts which it can

only handle sequentiaUy. These bottlenecks could degrade performance considerably. For

example, figure 5.7 shows a network of 9 processing nodes. Suppose nodes 2 - 9 all requested
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a method copy from node 1. Node 1 would receive a barrage of 8 requests for the method

which would eliminate all parallelism, since it could consider each request only sequentially.

One way to reduce the threat of performance degrading bottlenecks is to set up a

distribution hierarchy, so that each node requests resources from its local distribution center

(the distribution hierarchies are different for different resources). Each of these local centers

would make requests to its superior, all the way up to the master resource center. We can

use this type of distribution graph to help in requesting method copies (or copies of any

type of immutable data for that matter).

Take again the 3 x 3 node network example, where 8 nodes request a method from

node 1, but this time impose a distribution bureaucracy like that shown in the tree in figure

5.8. This time, node 1 only has to handle 3 messages, from nodes 2, 4 and 5. Each of these

nodes serve as local distribution centers for the remaining nodes. Node 2 services nodes 3

and 6, node 4 services nodes 7 and 8, and node 5 services node 9. In this manner we have

permitted more parallelism to continue, as well as limiting the burden on node 1 (which

could cause queue overflow, network blocking, and other conditions where performance

degrades considerably).

Let's now discuss some ways that a distribution tree method caching scheme can be

implemented in the Jellybean Machine system software. First, what are the contraints we

are working under?

* The distribution tree edges must be easily computable
* We need to make reasmonable choices for branching factor versus tree depth. Too high a

branching factor might create bottlenecks, but too low a branching factor would tend
to cache unnecessary copies, and suffer long latency as the birthnode was many edges
away from the requesting node.

e We would like to have significantly different trees for different resources. Different
methods should have different distribution hierarchies, again to decrease bottlenecks,
and to distribute resources more thoroughly.

One fairly simple first attempt at a distribution tree formula might be to go to the

distribution center that is halfway between the current node and the birthnode in terms

J . . . . .. . .. .. ...
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Figur 5.8: A Distribution Tree Bureaucracy To Balance Load in a 3 x 3 Network
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of hops. In other words, to find the next regional distribution center, given the birthnode

coordinates (z, 1) and our current coordinates at (z,, y,), we would calculate the halfway

coordinates (z , yj) by:

Zb - ZC

Az'real= 2

Ax= r'read if SPZreal 0{ - Izreal if spzre < 0

AY r1al if Igslreal a 0{- 'lire-lil if spyr < o

ry rZ+ ayl =

This is in fact the algorithm used to create the distribution tree in figure 5.8. Figure 5.9

shows several distribution trees created by this algorithm for networks of various sizes and

various birthnodes. This method creates trees with depth at most log2 m + I for a network

with a maximum dimension of m nodes. So, for a reasonable sized machine of 4096 nodes

(64 x 64) we would at most have to traverse log2 64 + I or 7 edges of the distribution tree.

For enormous systems, say 1K nodes on a side, the tree depth will be only 11.

(;
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Chapter 6

System Support of a

Type-Dispatched Calling Model

We never sent a messenger save with
the language of hi. folk, that he

might make the messae clear for them

- The Koran, 13:11

One of the most important aims of the Jellybean Machine is to provide a concurrent

processor that efficiently supports object-oriented, late-binding procedure activations. This

chapter introduces the idea of message-passing and late-binding programming methodolo-

gies, and discusses the system services in the Jellyboa Machine operating system that

support this manner of programming.

6.1 Message-Pasing and Object-Oriented Languages

(, There has been much interest during the past few years in "object-oriented" programming.

Though this term is not particularly precise, it does describe a fairly cohesive set of languages

56
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exhibiting behavior markedly different from the typical Algol-like programming style. There

are two characteristics in particular that languages typically categorized as object-oriented

share.

First of all, operations tend not to be thought of as functions applied to data objects,

as they are in Algol derivatives. Instead, data objects are upersofied" as "actors" that

receive requests made of them. These requests are made by "sending a message" to an

object called the receiver of the message. The operation that was requested of the object

is typically called the selector, since it selects the object to be performed. So, where a

standard language Algol-like language might calculate the determinant of a matrix m by

det minant (a);

and object oriented implementation might look something like

(send a 'deoterainant)

We call this concept of performing operations by sending selectors to objects the message-

passing paradigm. This paradigm turns out to be a very convenient model of computation.

The second characteristic of object-oriented languages that make them appealing is

the fact that the operations on different data-types can have the same names. Th:! 4]]ows

us, for example, to have an 'area selector for circle data types, as well as an 'area selector for

polygon data types. In many other languags this would cause a naming conflict, requiring

us to set up an explicit naming convention, such as calling circle.area() and polygonarea()

routines o. objects of the proper type.

But, mu,-e importantly than just saving us the hanse of naming conlicts, object.

oriented languages actually decide which procedure to run for a certain data type. In other

words, when an 'area selector arrived at an object, the system would decide whether this

object is a circle or a polygon and automatically run the correct procedure. In addition,

if the receiver of the 'area selector was not a data type that supported the area operation
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(such as an integer), then an error would be reported by the system. in Algol-like languages,

it is the burden of the programmer to know the type of the object he is dealing with, so he

can call the proper operation. This is crucial in many symbolic languages with loose type-

checking, like Lisp, where we can have lists of many different types of objectsl. This is called

a late-binding activation since we don't decide what routine will be run at compile-time,

but instead wait until later, when the message send is actually done.

Operations with the same name and semantically similar meaning supported by

various data types are called generic operations since these operations represent the generic

behavior the programmer wants to accomplish (add things, draw things, calculate areas of

things). The specific behavior is calculated at run-time once we know the data type of the

object (called the clas of the object), and the selected operation, by a process known as

( clas-selector lookup.

So, object-oriented languages have two main components

1. Procedures are activated by the message-patang paradigm rather than a more ap-
plicative model of programming.

2. Each data type has its own set of supported operations, where names can be the same
as in other data types, and may represent generic operations over varied data types.
Activations are caused by late-binding send* which lookup the specific operation to run
based on the class of the object receiving the message (the recever) and the selected
operation (the selector).

Our goal now is to provide a system substrate that will efficiently and conveniently support

these aims.
JA xasileofd&isas object orienteam, where we hae a bat of anay different

Ajsa~~dmmnl~~ '" L w orefresh the screen in an object-oriented
sytm is tosead a 'draw ameag to each object a the Host. Based onath. data, type of each object at

rus-tim, the appropriate rtine (dade draw, rectangle draw, taxt draw, etc.) i activated

IC
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Rouin Symbol ID Ail to Slot Node

Figure 6.1: Format of the SEND Memap

6.2 Late-Binding Send Execution Support

The next task of the operating system is to provide a mechanism to simulate the message-

pasing paradigm. We already have network communicaton hardware that allows data to

be sent between nodes. We also have a global object namespace provided by the virtual

memory extensions. Together, we can use these components to implement the mssage-

passing execution model.

To do this, we implement one more primitive message, the SEND message handler

(not to be confused with the SEND machine instruction). Tki primitive message handler

acts in the object-oriented maner we showed earlier. Figure 6.1 shows the significance of

the different words of the mesage. The first word is the address of the SEND message

handler, the second word is the selector, the third word is the receiver. The rest of the

words are arguments, and information about where to reply to.

When the SEND message arrives on the node that the receiver resides on (we for-

ward this UND message to wherever the receiver resides) the primitive messap handler is

started. Figure 6.2 shows a flow chart that describes how the SEND message handier works.

It first picks the clas our of the receiver object (so we know what data type the receiver is).

We then merge the class and selector together into a class/selector word (shown in figure
66.3). Now that we have the clas and selector, we try to see if there is a class/selector -.
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method ID binding in the cache. If so, we start the method with the CALL message as

discussed in the previous chapter. If not, we need to lookup the binding.

At the current time, we do'not hve enough insight into the characteristics of ma-

chine behavior, to feel comfortable locking down the class/selector lookup algorithm. For

this reason, we provide the lookup routine in a method. We insist that this method is allo-

cated before any others so it always has the same method ID. This LookupMethod method

takes the class and selector, and consults some distributed system table to find the method

ID corresponding to this class and selector.

6.3 Loading Class/Selector Methods into the System

Let's now briefly look at how the class/selector method information is loaded into the Jelly-

bean system. Figure 6.4 shows the schema for how the compiler and run-time environment

will interact with the Jellybean Machine processing network. The compiler is responsible

for generating class and selector numbers and for compiling the source language into MDP

machine code. A certain node of the network is picked for the method to reside on by some

distribution policy. The method data as well as the class and selector that this method

represents are sent to this chosen node by the NEW.METHOD message. The format of a

NEW.METHOD message is shown in figure 6.5.

When a NEW-METHOD message arrives at a node, the NEW-METHOD message

handler begins executing. It makes an object to hold the method, and copies the code from

the message into the object. The NEW.METHOD handler then calls the InstalMethod

method which takes the class, selector, and method ID and makes the bindings in the

clas/selector -- method ID data structures.

( Specification of the class/selector -- method ID data structures has been ignored

without attempts at subtlety. We do not have enough insight to definitely specify the best
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10 bibs 10 bits

Figure 6.3: Class/Selector Word Format

Shel 4-oComplerCompiler
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Disk Lodr -t. Jellybean-Machine

Figure 6.4: A Coars View of the Compiler/Machine Interface
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NEWI Routine Cass Selctor ode

Figure 6.5: Format of the NEW-METHOD Message

format for these tables. We can talk a bit about the issues involved. (1) We should be

able to take a class/selector word and efficiently find the corresponding method ID. (2) The

table should be distributed around the network in a way to minimize bottlenecks.

A reasonable way of doing this would be to apply some "bit-twiddling" function

to the class/selector words to decide what node is responsible for knowing their bindings.

The actual data structures could be hashed, or perhaps each class would have an object

that holds the method IDs for every selector. One annoying problem with any approach

is the boot-strapping problem. We need to know how we can get to the data. Because of

the added indirection through the LookupMethod and InstallMethod handlers we have the

flexibility to try several approaches and test their performance in the future.

6.4 Returning Values

Return vale can be sent with the REPLY message. This mesage takes the context ID

to reply to, the slot number of the context to fill, and one word of reply data. The reply

data is pa d by value if it is a primitive data word, or by r lemce if an object is to be

returned.
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6.5 Summary

The class/selector calling model is a convenient mechanism for invoking tasks. By imple-

menting it efficiently in the operating system kernel, we can guarantee an efficient implemen-

tation. To provided extensibility, we provide hooks to the LookupMethod and InsertMethod

handlers, so these routines can be reconfigured independently of the rest of the kernel.



Chapter 7

Storage Reclamation in the

Jellybean Machine

But virtue, as it never will be moved,
Though lewdness court it in a shape of heaven,

So lust, though to a radiant angel linked,
Will sate itself in a celestial bed,

And prey on garbage

- SHAKESPEARE, in Hamlet f, V. 53

7.1 Introduction

The successful performance of our machine relies on the fact that sufficient parallelism

exists on tle grain of methods. In order for this to happen, it is important that data-

dependencies to shared objects are minimized, by adopting a more functional approach,

where methods interact by value rather than by reference, a much as possible. This situa-

tion promotes a large number of small, short-lived objects. Because of the minute amount

of memory per each processing node, an efficient storage reclamation mechanism becomes

65
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an important facet. The characteristics of our system, however, cause many straightfor-

ward methods of storage management to break down. In this discussion we will examine

some of the important properties of the Jellybean Machine, and the ways these properties

influence reclamation. The rest of this chapter provides a discussion of the issues pertaining

to reclamation on the Jellybean Machine, and a possible first-cut at a garbage collection

algorithm.

7.2 Automatic Collection is Desirable

Because the system is object oriented, and because we have a small memory with frequent

allocations, object reclamation is important. Because objects can be shared in complex

ways, and because of the high level programming model we wish to support, we wish most

object deaJiocations to be handled automatically by a "garbage collector" that searches for

objects that are no longer in use (i.e. there are no pointers to the object anywhere) and

deallocates them when necessary.

7.3 Choosing a Collection Approach

Several characteristics of the Jellybean Machine will guide us in the choice of garbage

collection. Let's remind ourselves of the character of the machine.

7.3.1 Memory Organization

The memory in a Jellybean processor is small, and it is local to that processor. Memory

allocation is done in a simple contiguous manner. Compactiou can be done in parallel

very quickly. Memory objects are segment-based and are iven unique object id's. In

addition, these object id's are concatenated with a birth node number to provide a global
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virtual address. The virtual to physical translation mechanism uses caching to improve

name resolution, but this relies on locality. Random access to many addresses could be
very expensive.

7.3.2 Addressing System and Network Topology

The Jellybean Machine uses a distributed memory to provide "site autonomy" [LS80] in

order to perform local operations very fast, and avoid memory conlficts. But, the tradeoff is

that foreign accesses will be very costly, involving a menage send mechanism that is at least

an order of magnitude slower. In addition, distributed memory can require synchronization,

and the delays of network communication may make certain synchronization conditions

impossible. The network may cause bottlenecks to occur if too many messages are sent to

one place, and may hold data in transit. The network latency may also be a factor.

7.3.3 Garbage Collection Character

Garbage collectors take on various different characters. The common approach of reference

counting collection doesn't appear to be feasable in the Jellybean Machine because (1)

it cannot collect cyclic data structures, (2) every pointer change will require a (possibly

remote) object access, and (3)'we are not always aware when "dead" pointers get changed.

For these reasons, we decided to attempt some variant of a pointer chasing garbage collection

mechanism. The next section describes the implementation of a pointer chasing garbage

collector for our machine in some detail.

7.4 A Pointer Chasing Garbage Collector

There are several properties that we would like our garbage collector to have.



CHAPTER 7. STORAGE RECLAMATION IN THE JELLYBEAN MACHINE 68

" The collector should be efilcient in terms of time and message snds. We do not want
the queues of all node to overdow with collection messagms.

" The collector should run in the background or incrementally, for two reasons. Firs,
we wish to take advantage of processor idle time so that we can squeee as much
computation out of our processor as possible. Secondly, w would lik to avoid the
situation where our machine runs for a while and then "huap up" for an hour while
garbage collection occurs.

7.4.1 The General Idea

Most of the work of pointer chasing garbage collection algorithms to date ae targeted at

sequential or shared-memory macins with large virtual mamories. The standard algo-

rithm is based on the copying collector proposed by Baker. This has been expaded into

incremental collectors and has been tuned to various object lifespan., with a good degree

of success. Still, these approaches are targeted at a genre of machine of a radically differ-

ent character that the J-Mackh. With an admitted scarcity of knowledge in distributed

collection, the rest of this chapter serves only to sketch a simple vision of such a collector

[Tot881, and some of the problems that are faced.

A simple collector would involve recursive marking by message Seuds, and would

compact the heap rather than by scavenging or copying, due to the small amount of memory

per chip. The phases of this simple collector would be:

Desire The desire phase occurs when some node or nodes has a desire to garbage collect.
Perhaps a node or a certain number of nodes have run out of memory. Perhaps this
occur On & time count.

Init The initialization phase is where objects are marked unrefrenesd initially, as well as
setting any necessary variables.

Marking The -arking phase does a recursive descent of the reference tree starting at the root
set, marking reachable objects with the reachabe tag.

Sweeping When mark;-g is done, the memory can be compacted by "swwepin g' the good objects
back toward the bottom of the heap, and changing their virtual - physical bindings.

I m n
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7.4.2 Problems

Synchronization and "Travelling References"

A major problem in garbage collection across a communication medium is lack of synchro-

nized, instantaneous transmission. This shows itself in garbage collection in a few ways.

One of the more annoying problems is how to be sure that the last pointer to an object

isn't in transit when the garbage collector comes along. The garbage collector doesn't see

any pointers in the network, so an object may be deleted because a pointer was "travelling"

between nodes where it can't be noticed. We can refer to this as the travelling reference

problem. Figure 7.1 shows a portion of a network of processors, where an ID of an object

is in the network when the collector is run.

An obvious way to resolve this situation is to prevent all upcoming message sends

during collection, so that no other pointers are mailed into the network, and then to wait

until all messages in transit have landed in a queue. We can tell when all messages have

landed by either waiting a length of time we know to be longer than the maximum latency

from the most distant nodes, or by sending "scout" or "bulldozer" messages down the

network dimensions. When all these "bulldozer" messages arrive, they will have pushed all

other messages out of the way, and the network will be empty.

Problems With Disabling Sends

In order to prevent the travelling reference problem, we have to

@ Disable sends so no new references enter the network.
e Wait for all messags in the message in the network to land.

But, we have no explicit mechanism in the MDP processing node to disable sends'. If we

did, we could allow the processors to run until they tried to execute one of these disabled

'Or more preferably - a mwhanim that would disable any sends that would cause a reference to be
mailed into the network - all other memsges could continue
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Figure 7.1: Object ID Travelling in Network
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instructions. When this happened, a fault could occur and some manner of process halting

could occur (such as saving a context for the process for later re-starting).

A possible way to resolve this problem at first might be to place guards in certain

high-level execution handlers such as SEND and CALL. These handlers are run when a

SEND or CALL message (two messages that ask a node to start executing a method)

arrives. Inside these handlers we could have a guard that would defer the execution of

the method until collection finishes. This goes a long way toward resolving the problem of

travelling references if most the code that mails IDs around is code that is executed with

CALL and SEND3

Another way to shut down the machine might be to disable the queue execution.

This would cause messages to back-up in the queues. Certain messages that we would want

to execute could be done by having the processor "walking" the queue by hand looking for

certain types of messages (such as garbage collection messages). It could also pull items

out of the queue and ieta the heap to prevent queue overflow.

Problems With Background Execution

Since, at the start of garbage collection, we stop message sends by various possible mech-

anisms, our concurrent machine is effectively shut down. This violates our desire for the

collector to run in the background, in parallel with method execution.

2 howCueadg, the difficult to reove problem of insufficient memory for a context alloca-
tioa. T ui e middle Uectio. When theu is not e2og local memory,
the standard aechaiom i to do the allocation on a f node. But this requires mailing references in the
network, wkis exactly what we e trying to void. This undercor the difttty prsnt i provdn

efficient, convenient methods of prevent travelling references
3Aad this is lily to be true. Apart from CALL and SEND mes.age, all other me mage ar primitive

system messge (where %he system ay have to be responsible ine avoiin ID mailing during collection),
and vrios oth emages to create NEW objects &ad handle i.action returns. It we think of a CALL
or a SEND as beg a uction call, then this gud method will eventually stop the machine, with every
procesmor being idle or waiting to execute a fenction. This implementation has at lost 2 requirements that
we must always be aware oL (1) We must insure that all non-CALL and aos-SEND mesagem must not

violate the rules and mail references during garbage collection time. (2) Catastrophe can occur when we run

out of memory trying to make contexts to hold the deferred execution requests.



CHAPTER 7. STORAGE RECLAMATION IN TU .ELLYBAN MACHINE 72

In addition, the lack of a register set for background mod. prevents any way for the

Message Driven Processor to take advantage of idle time in a reasonable way. Since any

message would take priority over background mode, the tegister set will be trashed. Any

computation done in background mode must shut off interrupts, which instead of taking

advantage of idle time, takes advantage of application execution timel Some compromises

can be made, such as having background mode start up small units of computation by send-

ing priority 0 mesages, or by queuing up contexts of waiting-to-run background processes

that e be m by a context startup message send when the background loop is entered.

Again, various improvements should be examined.

7.5 Summary

The characteristics of the Jellybean machine necessitate a heap collector to reclaim storage.

This collector may have to run often (since our nodes have such a small amount of memory).

A reference counting approach seems to be out since there is a large overhead in changing

the object reference counts (and it is difficult to know when a refrence is written over

and thus deleted) as well as the fact that it cannot handle cyclic structures (if we insist

that cyclic structures are illegal that results in a big lows in tenas of Rexibility. : we don't

collect structures, we will rapidly run out of memory). A pointer chasing collector has

problems with havelhng nferemse (where the marker wfl not s the final reference to

an object because it is in a netwoz - and thus delete the object), but seems to be the

most viable approach. It wuldd be desiable to have the celecte run in the background

without shut*:ug the machine down, but the travdling refmtce problem seems to make

this difficult.

mmmmmm mm I -mm m mmmm 7)'mm
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Chapter 8

Support for Concurrent

Programming Languages

I get by with a little help from my friends.

- JoIN LENNON AND PAUL MCCArrNEY, in "A Little Help From My Friends" fr1967)

The Jellybean Machine Operating System Software provides several noteworthy

services to support concurnt programming languages, both for functional and efficiency

reass. These include (1) the SEND sad REPLY message handlers, (2) futures, (3) dis-

tributed objects, and (4) the interaction interface.

8.1 High-Level Languages

8.1.1 CST

Currently, the high-level language being used in the Jellybean Machine project is a Smalltalk-

80 based language called CST (Concurrent SmallTalk) (DC]. CST uses a Lisp-like pre-

73
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fix syntax, sad coda sends impcitly in a function application metaphor. CST allows

ayAchronous messag to exploit concurrency, and fully utilim thjate-binding execution

model. Locks are provided for explicit synchronization, and. a "distributed object" data

type exists to scatter object. stt:over, a larip-areA. This CS, code will be compiled. to

intermediate code which will is pused tbhoug.a back end that couvpws the i-code to MIP,

machine code and loads it into the system. The compilatioR and joae mechaism is was

previously sketched in figure 6.4.

The rest of this chapter descibesseveral operating system services that support the

execution of the object-oriented model of computation.

8.2 SEND and RFPLY

As discussed in earlier chapters, the SEND message handler provide, the machinery to run

a method based on the clas of a receiving object and the selector symbol "sent" to the

object. In the current system, the. SEND message may also describe one object to return a

value to. This return-slot is specified by passing the ID of the obj*ct to hold the returned

value (the returned value must be one word, either a primitive. value such as an integer or

a symbol, or the ID pointer to the object), the slot (index into the Object) number. and thoL

node the object is on.

The REPLY handler actually performs the return of the value. The REPLY message

mails the target object ID, the targset variable number, and the one word return value to the

node number specified in the SEND message. When a REPLY n*pe arives at a node,

the returned "olue is stored in the indicated slot of the target object, and any processes

waiting for a variable to be filled by a reply are restarted.

)i
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8.3 Futures

8.3.1 Conforming to Data Dependencies

Data dependencies impose an order on execution. If a computation result is used in a

calculation, the result must be available before the calculation can occur. In a sequential

processor, there is no problem. The instructions are ordered in such a way to insure that

previous results are available in certain places before those values are needed. In a dis-

tributed processor, on the other hand, a computation may take an indeterminate amount

of time to complete on a remote node. Because of this, we may get to a point where a value

is needed before the calculation of the value has completed. It is necessary to wait until

this result returns before continuing the calculation.

8.3.2 The Check's in the Mail

This section details a mechanism used prominently by the Jellybean Machine to impose data

dependency orderings conveniently. The mechanism is quite simple. Whenever a calculation

is spawned off in parallel, the destination location where the value of the calculation is to

be stored is filled with a specially tagged value, called a context future, indicating that the

value will arrive to the context in the future. When the calculation replies with the value,

the future is overwritten with the real value of the computation.

When an access is made to a location in a context, using the value located there,

there is the possibility that the value hasn't replied yet. We can tell if the value hasn't

returned yet, because it will be filled with a context future (c-future) if it hasn't. Any read

of a location containing a c-future will cause the processor to fault, (1) saving the processor

state in the context object and (2) marking the context as waiting for a c-future. When a

reply arrives to a context, the context is checked to see if it is waiting on a c-future. If so,

it is queued to be restarted.
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Advantages Disadvantages

Simple Large Inertia

Transparent Parallelism Wasted

Minimal Synchronization False Restarts

Table 8.1: Pros and Cons of Dependency Enforcement by Futures

Let's examine this context-future mechanism in a bit more detail to see what it

really provides us and what deficiencies it faces. Table 8.1 itemizes some of the advantages

and disadvantages of the future mechanism.

8.3.3 Advantages

As we said earlier, the most desirable characteristics of the c-future approach is that it is

simple to implement and understand. It fits well into the existing system, being "opti-

mistic" - taking advantage of the fault mechanism and the tagged architecture and using

contexts.

Being transparent to the programmer/compiler writer is desirable as well. No

burden is placed on the code generator to explicitly keep track of non-completed tasks.

No extra instructions need to be placed in-line to check for the presence of values, or to

manipulate semaphores.

FinaiAy, the future approach only pays the price of synchronisation if it is neces-

sary. If a value returns before it is needed, or if an arm of a conditional is never executed,

we will not need to pay the synchronization price1 .

'Though we do require all replies to be in before we deallocate a context, so we can re-use context IDs. )
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8.3.4 Disadvantages

On the other hand there are several disadvantages to this approach. The system is subject

to high inertia. The total cost of halting and saving a context and restarting it when

the return value arrives is relatively high. The worst case occurs when we have many

dependencies following one after another. Here, we would keep halting and restarting,

making very little progress. It can be difficult to gain any momentum, because of the time

spent saving and restarting contexts. This case isn't quite so bad if we have other tasks

queued up that can take advantage of the free time, and if the replies take a while to

arrive (which is likely to be the normal case). The real question is one of balance between

computation time and system overhead time.

By controlling execution on the grain size of methods, whenever a sequential exe-

cution encounters a c-future value, the entire method will be suspended. Thus once we hit

a c-future value, other possibly executable code in the method is not run. This is directly

the result of basing the grain of parallelism on the unit of methods, and it has the effect or

wasting parallelism as opposed to a more fine-grain execution model.

C-futures also can lead to a problem of false restarts where a reply for a different

slot would restart the context, which would immediately halt on the same c-future again.

If we were waiting on variable A to return and a reply to fill variable B arrives, the context

would be restarted falsely, and when we read A we will hit the same future and halt again.

This is rectified in the prototype implementation, by using the RESOURCE-NEEDED slot

of the context to hold the slot number the context need to be filled. When a REPLY arrives,

the context is only restarted if it was waiting on the slot the REPLY came to fill.

'V
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8.4 Distributed Objects

A final system characteristic designed to support efficient high-level language execution is

the introduction of distributed objects. A distributed object is one where its state is broken

up into segments called constituent object, and scatterred across the processing network.

Its purpose is to allow parallel access to different parts of an object.

A single object can only be directly accessed by the node it resides on, and the node

it resides on can only run one task, implying that an object can only be computed on by

one task at a time. In the absence of coherent caching strategies, this one-object--one-task

constraint can potentially severely limit parallelism.

By distributing parts of the object over several nodes we can provide some extra

(albeit limited) concurrency. The hope is that this increase of concurrency along with the

fact that an object-oriented programming model should provide access to many distinct

objects being computed on at once will prevent object bottlenecks from becoming a serious

performance hindrance.

The system supports distributed objects by providing (1) allocation and (2) con-

stituent lookup services. When a distributed object is allocated, the system creates con-

stituent objects and scatters them in a reasonable way around the network. Each :=.stituent

object has a normal object ID number which is unique for each CO, and a distributed ID or

DID which is the same for all constituents of a distributed object. This DID contains the

information necessary to locate any constituent object.

8.4.1 A .istributed ID Format

Figure 8.1 shows a possible format for a distributed ID. The DID knows the number of

constituent objects, the hometown node of the first object, and a node-und ,,:e serial num-

ber. This prototype DID format places a limit of 256 COs per distributed object and 256
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8-Bits 16-Bits 8-Bit.
A_

NUMBER
ofG HOMETOWN-NODE SERIAL

TAG CONSTITUENT ("ROOT") NUMBER
OBJECTS

Figure 8.1: Distributed ID Format

distributed objects per node.

8.4.2 Dealing out the Constituent Objects

When a distributed object is allocated, we want to have a function that maps each con-

stituent object to a node number. This function should have several properties. It should

be (1) easy to compute, it should (2) scatter objects in an acceptable manner.

The goal of distribution is to provide concurrency, so with this aim as the measure of

success, any distribution scheme would be equivalent. But, we need to take into account how

the processor load is distributed around the network as well. There are two dichotomous

goals of constituent distribution, (1) to scatter the objects uniformly across the network so

there are no hotspots and (2) to scatter the objects locally to prevent long distance network

traffic.

Dispersion or Locality?

These seemingly contradictory aims argue against each other. If we scatter objects uni-

formly, especially if there are very few objects, the data may lie very far away from the

majority of the computation. Even though some of the computation will migrate near the

data and spawn from there, there still many be a great deal of network traffic caused by
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stride = codtsJ

node,, = (birthnode + n x stride) mod nodes

Figure 8.2: Distribution of Constituent Objects

the processes still proceeding from the root of the computation. In time, migration of work

may balance the load appropriately, but we still have worries about uniform distribution.

On the other hand, if we dump the constituent objects cose together, the computa-

tion will cluster around the data, and not hinder the performance of the rest of the network

via long distance traffic, but this local hotspot may overwhelm the computational resources

of this local area of processors.

A Simple Dispersal Approach

The first design of the distributed object system leaves this question for further study,

and adopts a simple, relatively disperse manner of dealing our constituent objects. We

adopt a simple uniform distribution strategy hoping that the load balancing mechanisms

incorporated into the system will work effectively. To insure the efficiency of the calculation

of the function, we use the simple distribution algorithm shown in figure 8.2. The node

numbers we describe are a finite interval of numbers {In E A( : 0 _5 n < nodes} we might call

ordinal node numbers and not the system network address node numbers which encodes the

total addressing space of the network. The conversion between the two formats is simple.

Figure 8.3 shows some sample distributions for various sized networks, birthnodes, and

constituent object counts.
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Legend
0Constituent Object

0 Constituent Root
]Object (Birthnode)

3 CO's 4 CO's
Birthnode = 1 Birtlnode - 3

[I R [I [IS [o[ ooso
1]11 E0 0 El0-10 0S00

3 CO's 4 CO's 5 Co's
Birthnode = 0 Birthnode = 10 Birthnode = 13

Figure 8.3: Constituent Object Distributiov Examples
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'= [= eln - o] x stride + birthodeSstride stride + birthnode
r currentnod- birthnode~stride ie x stride + birthnode

if I < birthnode then I = 1-nodes mod constituents

if r < birthnode then r = r-nodes mod constituents

n = min(hops(currentnode,l), hops(currentnode,r))

Figure 8.4: Equations for Choosing a Nearby Constituent Object

8.4.3 Choosing a Constituent Object

We now have a first attempt mechanism to assign node numbers to each constituent object.

Given a constituent object, we can find the node of its residence. For simplicity, we prevent

constituent objects from being migrated. Now, we want to provide an algorithm to choose a

constituent object given a DID. We could do this randomly, but in order to take advantage

of locality, we want to choose a constituent object that is reasonably close to the current

node. We do this by finding the ordinal node numbers of the constituent object! on either

side of the current node number (I and r for left and right) and choose the one (n) with the

minimum distance in x-y hops. We have to be careful about 'wraparound". The algorithm

is described in figure 8.4.

•)
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Chapter 9

Issues From a Prototype System

Keep thy heart with all diligence;
for out of it are the iuuea of life

- The Holy Bible, Proverbs 4:23

This chapter discusses in some detail, relevant issues that occurred in the design and

implementation of a prototype operating system. The following topics will be discussed

* The sizing of the BRAT
* How to handle a full translation table
* The scarcity of virtual names

* Out of memory problems
0 Queue size
* Queues, stacks, and saving processor state

These situations are troubling enough to require discussion. The actual prototype imple-

mentation can be found in an appendix at the end of the thesis. Specifications of the system

calls and message handlers can also be found in the appendices.

83
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9.1 Sizing the BRAT

To support the global virtual namespace, we use the Birth/Resideace Address Table to

hold the necessary translation bindings. This serves a purpose similar to a page table in

a multi-level paged memory system, or a segment table in a segment addressable memory

system. The BRAT needs to hold at least

1. virtual -- physical mappings for objects residing on this node

2. virtual -- node number links for objects that were born on this node, but now reside
elsewhere

9.1.1 Memory Limitation

But, due to the small amount of memory on each chip, we face a severe restriction on

the number of bindings that can be stored. Resfrving room for system data structures,

operating system variables, and the heap, we are left with a paltry amount of memory for

the BRAT. This will directly limit the amount of objects creatable on a node. We must

make a careful compromise between heap size and translation table entries. We must also be

able to purge entries from the table when objects are deleted, stressing an efficient storage

reclamation strategy.

9.1.2 BRAT Use Scenarios

Let's take a look at a few possible scenarios that can occur with object management.

1. There is room left in the heap and the BRAT for more objects to be allocated.

2. There is room left in the BRAT but no more room left in the heap.
3. The heap contains many small objects that don't take up much room, but fill the

BRAT, so that no more objects can be created.
4. The heap can be nearly empty, but no more objects can be allocated because the

BRAT is full of entries of migrated objects.

qN
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The first case is the most desirable one, we wish we could have this happen all the time.

The second case is undesirable, but will probably happen reasonably often due to the small

memory space. This can be rectified by exporting objects to other nodes to free up heap

space. The third and fourth scenarios, however, occur because of lack of translation table

space due to the presence of large amounts of resident and/or migrated objects. It is these

two cases that we would like to minimize.

The prototype system that was developed assumed 1K of RAM per node. Of this

memory, 424 words were reserved for processor and OS data structures. Thus each processor

is left with only 600 words to be shared between the heap and the translation table. The

question that appears, is how to partition the BRAT and the heap in a reasnable manner.

9.1.3 A Prototype Sizing Based On Average Object Size

We have no measures as to object size in our system, but we might be able to suggest a

reasonable approximation of, say, 10 words per object1 . With 2 words of header for each

object, this would leave 8 words of object space. So, each object would take up 10 words

of heap space and 2 words of BRAT space, allowing = 60 objects. But, we also need to

reserve room for bindings of objects born on this node, but now residing elsewhere. Let's

assume that we pick a limit for this, such as the total number of avrage-size objects that

could fit in the heap. This would allow us to migrate every object and STILL fill the heap

with average sized objects. This leaves us with the following equations.

heapsize + bratsize = freememory

residentobjects =

migratedobjects = residentobjects

bratsize = 2 (residentobjects + mlgr.tedobjects)

'Though of course this will depend greatly on the type of progiam being run.



CHAPTER 9. ISSUES FROM A PROTOTYPE SYSTEM

|he ie hX freemeory

= bratsize = x fremenmiory

With 600 words of free space, this leaves the following parameters.

heapsize 428

bratsize = 172

In a 4K RAM node, we might expect the following configuration as reasonable one.

heapsize = 2552

bratsize - 1020

In the prototype operating system, the BRAT size has been set at 128 words, rather that

172, for ease of implementation.

9.2 Running Out of Binding Space

Sooner or later, with even our bat efforts at insightful sizing of the BRAT, we will run

out of room to make any bindings. There are several conceivable ways of resolving this

situation.

1. Throw up your hands and quit.
2. Forward your allocation request to another node.

3. Make the BRAT bigger.
4. "Delegp " some of the binding in the BRAT to another node.

5. Change the hometown nodes of some virtual addresses to make other nodes responsible
for their bindings.

The current operating system implements choice 1 for the miet Pean. There is also som,;

code to support choice number 2, but this is complicated by the f ct that we might not be
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able to allocate a context (as discussed in an upcoming section). If this mechanism could

be made to work, it might be acceptable enough, realizing that any system will break when

the nodes begin to run out of memory. The investment in a proper load-balancing policy

may alleviate this problem. The operating system also supports the resizing of the BRAT,

but because of the hashing mechanism currently used (described in an upcoming section)

arbitrary resizing of the BRAT is difficult to do.

The delegation of ID is possible, but requires some thought. We need a way to

specify which IDs are delegated to which nodes, and this should take significanly less storage

than would be required to actually store the bindings. We could delegate ranges of IDs to

a node, but this node must have room for the range, and when this new node runs out of

room, it must also be able to delegate. This is a possibility for the future. The fifth item

in the list, changing the birthnodes of virtual addresses would be very expensive requiring

some synchronization, and a large broadcast of messages. But, perhaps this could be done

during the garbage collection phase, or offline, or at the end of the day as a background job

(given a suitably large machine).

9.3 Scarcity of IDs

As a related issue, given the virtual ID format of 16 bits of birthnode and 16 bits of serial

number, each node can only generate 65536 IDs. In the current system, it is likely that

many applications would run through this ID space in a fantastically short amount of time.

Of course, the time is dependent on the applications that are run, but we can sketch a rough

estimate for how long we can run before running out of IDs on a node.

The following calculations assume a 10MHz processing node where the average in-

struction length is 1.5 cycles long. We assume that the queue is always full of work to be

done. We assume that each message-spawned task work will be 200 instructions long (far
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above the likely amount). We finally assume that only 10% of the tasks that come in will

involve an allocation of an object.

107cycles 1 instruction 1 task .allocations = 6667allocations
scond ) 1.5 cycles ×200 instructions task second

At this rate, a node would run out of IDs in 18 seconds. Though these numbers are

questionable at best in the absence of actual measurements, it is quite clear that the ID

space is compeletely inadequate. We have to have a larger virtual ID, say by having 68 bit

words rather than 36 bit words, but in the meantime it might suffice to (1) borrow bits from

the node number field or (2) attempting to re-use certain IDs. Borrowing bits would be a

short time solution, by limiting our prototype machine to a 1K machine, we could get a 64

fold increase in serial numbers, allowing a node to run for 20 minutes with the assumptions

made above. But, for simplicity's sake, the current implementation has not adopted this

format. It would be a good idea to do this in the future until we build a machine with

larger words.

The second idea is a more interesting research issue. We already reuse context

IDs by requiring contexts to have received all replies before they are put on the free list.

This way, the amount of IDs reserved for contexts (probably the most frequently allocated

object) is significantly cut. There may also be ways of reusing normal object IDs. but a

space efficient way of noting these reused IDs may be difficult. Here are a few possible ideas

on how to reuse IDs.

1. Keep a fixed size table of free IDs. When an ob jet is freed, the ID will be placed in
the table. When an ID is needed, this free tablewi first be checked. The biggst
problem with this approach, is that when the table fills, IDs will not be placed in the
table and they will be "lost' forever.

2. Provid.. A separate routine for allocating "short-lived" objects. These objects would
take their IDs from a common, fixed-size pool of consecutive ID whose freeness could
be sipifled by a single bit for each ID. for example, we might reserve 256 "short-
lived IDs per node. The short-lived IDs' serial numbers might rane from 0 to 255
and the pool could be represented by 8 32 bit words sisg.fyi an array of 256 bits,
where a 0 indicates the ID is in use, and a 1 indicatingt tat it s free. If these objects
are truly short-lived, and they represent the bulk of ID requests, then this approach
might greatly extend the lifetime by conserving regular IDs.
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3. Every now and then, perform an ID "garbage collection and compaction" where all
IDs are renamed to consecutive IDs in effect compacting the ID space. This involves
similar issues to the mechanism of chaning an ID s hometown node number. It seems
to be very expensive, but it may be possible to interleave this with the normal garbage
collection.

The currently implemented mechanism only reuses context IDs (a fixed amount). No at-

tempt is currently made to reuse other object's IDs.

9.4 The Shortage of Memory

Of course, the scarcity of memory per node will also prove to be a problem. The goal

is to take advantage of the large collective memory provided by the system (a 4096 node

J-Machine with 4K memory per node would have 16 megabytes of primary memory). Load

balancing can be used not only in choosing processors to perform work, but also in choosing

nodes to allocate memory from. Simple gradient plane approaches [RF87] can be used

to cool down memory "hot spots". Garbage collection, expanded memory nodes, and the

sweeping of "dusty" objects to offline storage are all possible solutions to the memory

shortage problem.

The current prototype operating system kernel takes two approaches to memory.

If a message arrives to allocate an object, and there is not enough memory available, the

message is forwarded to another node. However, if a process has been running for a while

and the node runs out of memory, the calling message cannot simply be forwarded, since

some work has already taken place. Instead, the process must have its state saved in a

context, and room must be made on this node by evicting certain objects. Unfortunately,

there might not be enough memory to allocate a context. A solution out of this trap is to

require that there always be one minimal sized context object available for each priority

level. A check could be made in the CALL and SEND handlers (and any other message

handlers that could fail into these circumstances) for a free context.



I -

CHAPTER . ISSUES FROM A PROTOTYPE SYSTEM 90

9.5 Queue Size

Queue sizing also proves to be a problem in the system. Since we want to be able to migrate

objects by message sends, an empty queue must always be big enough to hold every object.

This means that the queue must be as big as every heap. This is far too costly in terms

of memory in the 1K node prototype, and we have not attempted to make a fix. It would

always be possible, though admittedly tedious, to send messages in "chunks" that would be

able to fit in the queues.

9.6 Suspension and Processor State

Whenever a process suspends and plan on restarting later, it must be able to save its

processor state. This normally means its register set, but we must not forget about two

other forms of processor state, queues and stacks. When we suspend and there is a message

we want to save in the queue, we copy it out into a heap object and set the message pointer

to point to the object instead of the queue. Stacks are more of a difficulty to save and

restore, and we have decided to explicitly prohibit the saving of stack frames. So, the

operating system is given the task of insuring it will never have to suspend and restart

with information on the stacks. This was a source of much personal misery during the

implementation of the OS (though certainly less than there would have been without the

existance of stacks).

9.7 Summary

This chapter has touched on just a few of the difficulties in the design of the Jellybean

Operating System Software. Some are due to inadequacies in hardware or scale, some are

due to lack of behavioral measurements, and some due to lack of insight. These will most
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likely become thoroughly examined as the machine design progresses into subsequent stages.



Chapter 10

Performance Evaluation

Never promise more than you can perform.

- Publilius Syrus', Maxim 528

This chapter provides a quantitative performance evaluation of several important

system services. Though the prototype implementation is certainly not optimal in any way,

it should be a reasonable approximation of an actual working operating system kernel, and

as such, the numbers presented in the chapter should be useful for the design and tuning

of the rest of the Jelybean system. In addition, we should be able to see what parts of the

system need fixing, before the machine is fabricated.

10.1 The Virtual Binding Tables

The virtual name manager is composed of five system routines nested in the hierarchy

shown in figure 10.1. The BRAT itself is composed of a 12A word binding table of 64 2-

word bindings. Words are entered by a linear probing [Sed831 scheme where a hash function

determines the first choice for the location of the binding, and a linear search is performed

92
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BRATENTER BRAT...ENTER.YEW BRAT.ALATE BRAT...PURGk

Figure 10.1: The Hierarchy of the Virtual Name Moaager

from there. This linear search can take a significant am unt of timp (at least on the scale

of average task size), so we need (1) an efficient algorithm and (2) a successful hashing

scheme. The remainder of this section examines the execution time of each BRAT routine

and preseqts some very prieliminary hashing measurements.

10.1.1 In.4.Qruction COwmte

The BILAT-'EEK system call is tbe cone to all of the vk&Wu# a ainrvim. Lt Xd~w a

key to hash and a data word to mastch (not necessarily the sme, 4ios y=. ml&t wWa 4o
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look for the first NIL slot where' certain key could be placed, as is done when adding new

entries). The key is hashed, providing the index into the table, and a linear search with

wraparound proceeds from here. The cost of this call is between 22 and 540 instructions,

based on how far the search has to progress. A reasonable cost approximation, Cpeek, for

a search that finds the data in the nth slot is 22 + 8 x (n - 1) steps.

The rest of the BRAT calls utilize this BRAT-PEEK routine.

* BRATXLATE looks up a binding in the BRAT and takes 27 + Cpeek steps to com-
plete.

" BRAT.PURGE searches the BRAT until it finds the first binding of the specified
word, and removes it from the table. This takes 30 + Cpeek steps to complete.

" BRAT.ENTERLNEW adds a new entry to the BRAT without first removing any
previous bindings. It accomplishes its task in 32 + Cpeek steps.

" The most expensive routine, potentially, is the BRAT-ENTER routine. This is
like BRAT.ENTELNEW, but it first removes a previous binding, requiring another
BRAT search. This can take as much as 32 + 2 x Cpeek 8p

10.1.2 Effectiveness of Linear Probing

Evidently, the crucial factor in the effectiveness of the BRAT routines is the cost of peeking

through the BRAT, Cpeek, which is a linear function of how far away from the expected hash

spot the value resides. What the average distance in hash steps will be for a typical machine,

depends greatly on (1) the application that is being run, (2) how storage reclamation is

handled, (3) and what is done when the BRAT overflows - all issues needing further

study. Nonetheless, I would like to proceed with an informal, ad hoc analysis, based on

reasonable estimates and educated guesswork. The rationale is to see if the linear probing

strategy seems to generally work - by that, meaning that the average number of steps is

small until the entry is found'.

'It is not obvious that this will so. In fact, it is quite easy to be concerned that this linear rehashibg

appro&& might actualy work itsef into a steady state where entrie ware always very far away from where

( they were supposed to be.
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The following data was generated by a simulation program called bretsin that takes

an input pattern of references and simulates their effect on the BRAT. The size and max-

imum fullness of the BRAT is specifiable. The simulator takes each reference and looks it

up in the BRAT.

" If the reference is in the BRAT, it records the number of steps away from where it
should be.

" If the reference is not in the BRAT, it is entered as soon as possible after its hashed
spot.

" When names get entered, some may be arbitrarily deleted to maintain a maximum
ful percentage.

" If the BRAT fills, a random slot will be emptied.

The reference pattern generator is also based on initial approximations, generating patterns

possibly likely in applications we envision running. It is currently configured with the

following parameters: 10% new IDs, 20% context ID, 35% recent ID to simulate locality,

20% less local IDs, and 15% very random IDs to simulate class/selector bindings, method

IDs and other references following less of a pattern. I would expect this estimate to be

cor'servative.

Based on these estimates, and the reclamation model presented above, we can chart

how many steps away from the hashed slot particular IDs land when they are entered. For a

64 word table, this is graphed in figure 10.2. We see an asymptotic function relating BRAT

space used and the locality of entries to their intended slots. For the 64 row example, the

system begins to be unmanageable after the BRAT becomes more thn 60 - 70% full.

Figure 10.3 shows the eff4ct of doubling the BRAT size. The trend is still rapidly

increasing, but the gains we got In terms of object storqg may ottwe*h the extra steps

involved in luup. The laten of the middle portion, fros 40 - % hints at a desirable

operating region.

So, now I would like to suijest educated guesses to the aaswens to the Mewing two

questions.
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1. How full should we allow the BRAT to get?

2. How lage should the BRAT be?

In the last few paragraphs, I indicated the severity of the BRAT filling problem. After 70%

capacity, the BRAT's performance becomes intolerable. For this reason, I suggest that 70%

capacity should be an absolute maximum for BRAT size, and the normal operating size

should not usually exceed 50%. 1 propose this as the answer for question 1.

Question number 2 can be answered by adapting the analysis presented in the last

chapter. The new constraint equations become.

heapuise + totalbratsize = freememory

residentobjects =

mipratedobjects = residentobjects

bratspaceused = 2 (resideutobjects + migratedobjects)

bratapaceused = .J x totalbratsize

p totalbrataize = x framemory

= heapsise = x freememory

With 600 words of free space, this reserves 218 words for the BRAT and 382 words for the

heap. This will hopefully be a more accurate value, though it is not a power of 2, which

will complicate the hashing slightly.

The efficient manipulation of the BRAT is crucial to the success of the Jellybean

system. Future study is needed to evaluate hashing functions, and perhaps a form of linear

re-/aohing is desired, where the first hash is followed by a subsequent number of other

hashes instead of a linear search. In addition, once real applications are run, we can get a

better idea how the system will behave. Likewise, the translation buffer performance needs

analysis, as this will indicate how often BRAT lookup occurs.
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10.2 Object Allocation

A common task of the Jellyban Operating System Software is to allocate objects from the

heap. This section will examine how costly this operation can be.

Figure 10.4 describes the nesting of services required to perform the NEW system

call. The ALLOC routine takes 24 instructions, it takes 19 instructions to generate a new

ID and it takes 32 + Cpeek instructions to enter a new ID into the BRAT. With 20 cycles

for inter-module glue, the NEW system call takes 95 + Cpeek instructions. According to

the BRAT analysis results, if we operate at less than 70% full, we will have to take less

than 10 steps to enter a new ID, this would indicate that Cpeek = 94 step$ and therefdre,

NEW should take 95 + 94 = 189 instructions. At best, with 0 steps to search, the NEW

call would take 117 steps.

10.3 Context Allocation

Another commonly executed routine is the NEW-CONTEXT system call. As described in

chapter 5, this service was expected to be expensive enough to merit special treatment. The

context free list was developed to provide a pool of pre-allocated contexts for fast context

allocation. The flowchart in figure 10.5 shows the steps taken by routine. Note that if the

requested context is of an abnormal size, or if there are no pre-allocated contexts on the

free list, the NEW routine is called to allocate a new object. Requesting an abnormally

sized context takes 25 + Cnew instructions, allocating a contdxt when node are on the free

list takes 27 + Cnew instructions, but allocating a context off the free list takes only 20. If

we can keep contexts in the pool, we will do well.

Freeing contexts is also fast, taking only 25 instructions. This is only about 10%

of the time it used to take to perform this operation, when we were required to purge the
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NEW
ALLOC r ID BRAT...ENTER-NEW

BRAT_-PEEK

Figure 10.4: Nesting of SeMvic for the NEW System Call

(
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old context ID, generate a new one, and place the new ID in the context and BRAT. By

preventing late replies to contexts, we have prevented this performance los.

10.4 Boot Code and Message Handlers

Let's conclude the chapter with a brief discussion of the complexity of the Bootstrap code

and several message handlers. The boot code is run when each processor is powered up,

and places the processor in a runnable state. All together, it takes 5005 steps to boot the

processor. This is made up of 4103 steps to erase the memory, 481 steps to initialize the

context free list with 3 contexts, 247 steps to ill the exception vector table, 86 steps to flU

the extended call table and 72 steps to set up the stacks, queues and other values.

The WRITE message handler takes 8 + 7 x 1+ 3 steps to sand I words of data. The

READ messap handler takes 8 steps to read an empty message, or 7 + 5 x (I - 1) steps to

read a block of data of length I.

The CALL message handler can exhibit several possible times. If the method being

CALLed is local, it only takes 6 instructions to start it executing. If the method is local,

but not in the cahe, it takes 64 + Cpeek stepr, because the XLATE exception handler

takes 58 + Cpeek steps to complete. If the method is not local, message sends are involved

making it more difficult to analyze.

10.5 ROM Size

Out of the 1024 words reserved for ROM, the operating system prototype uses 760.

.. .... . . -- - -,.,,.m,..,,.=m~mm-m . € mm m q 4 m •m
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10.6 Summary

This section presented a brief performance evaluation of several important parts of the

Jellybean system. In addition to analyzing the cost of routines, several more fundamental

issues were noticed. These are itemized below.

" The BRAT needs to be searched efficiently. The linear probing method used can take
a significantly long time if values get placed far from their intended position.

" Based on preliminary simulation, the performance becomes unacceptable when the
BRAT gets to 60 to 70 percent full. We can choose a maximum fullness, and derive
the BRAT and heap sizes based on the fullness value and the expected size of objects.

" We note that even with an insig'tful configuration of the BRAT, a translation cache
is required. The configuration of the cache is left to further study.

" Creating a new object is more expensive than we would like (a minimum of 117 instruc-
tions). This could be optimized with clever coding, but not much more performance
could be gained by this manner. The problem is more fundamental resting on the
performance of the cache and the BRAT lookup.

" The caching of free contexts seems to work well. Creating a new context requires
only 20 instructions if there is a context on the free list (and assuming we don't get
a translation fault). This is compared to a minimum of 144 instructions without a
context on the free list. Freeing a context is also fast, only 25 instructions.

" Calling a local method takes only 6 instructions if the method is local and its trans-
lation is in the cache! If it is not in the cache, performance again suffers, requiring a
minimum of 86 instructions.

Table 10.1 summarizes some of the more important performance statistics presented in this

chapter.

mm nmnmnnmmmmnnm mml mmmn n m)l
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Routine Instructiom Count Notes

BRAT.PEEK Cpeek = 22 + 8 x (n - 1) n = slots to search

BRAT.,XLATE 27 + Cpeek

BRAT.PURGE 30 + Cpeek

BRAT.ENTER.NEW 32 + Cpmk

BRAT-ENTER 32 + 2 x Cpe k  am

ALLOC 24

GENID 19

NEW 9 5 + Cpeek

NEW.CONTEXT 20 with context on free list

27+ Cpeek no context on free list

FR.EECONTEXT 25

CALL.MSG 6 with method ID in cache

64 + Cpeek method ID not in cache

Table 10.1: Timings for Common System Services
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Conclusions

Al's well that ends well

- SNAKSPSAIE, in All's Well That Ends Well IV

There i. a time for mny words,
and there is a tirne for sleep.

- Hostm, in The M/ad, XI

11.1 Summary

The Jellybean Operating System Software is a prototype operating system kernel for the

Jellybean Machine. Its duties include object-based storage allocation, virtual distributed

naming, object migration, process deflition and control, local and remote process execu-

tion, and the support of an object-orient calling model.

This thesis described the JOSS in some detail, its successes and weaknesses. The

report also talks about issues in the future Jellybean operating system that were not imple-

mented in the prototype because of lack of support, study and time. These include storage

reclamation, resource distribution bureacracies, and distributed objects. Thes will most

105
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likely become important parts of the Jellybean operating environment in thelfuture.

Several deficiencies may exist in the current system. Performance-wime, 9Wching

the translation table may well be too slow. Several solutions can be proposed including J(1).,

increasing the size of the BRAT and decreasing the fullness, (2) experimenting with variou.

hashing functions and (3) providing an effective translation buffer. Memory shortages may

provided a significant problem, and this will place an extra burden on reclaaiaZon attempts,

which are already made difficult because of the problem of travelling references.

On the other hand, if the cache works well, and if the BRAT is not very full, the

whole system seems to perform admirally. Method invocations are powerful but fast. The

context free list allows rapid creation and reuse of contexts. The global nazniag system and

migration provides a high degree of flexibility.

11.2 Suggestions for Further Study

This thesis scratched the surface of many interesting research issues, many 9f wlh.. I. fo_

one would be eager to investigate.

In the area of performance evaluation, the configuration and simulation the transla-

tion buffer and BRAT in a real life environment is important to the success of the Jellybea.

Machine. Also of practical as well as theoretical interest would be the study and evaluation

of distribution hierarchies and the various manifestations of how to handle virtual hints.

Reclamation is an important potential area of research. An efficient mechanism to

collect garbage over a distributed network would be of genera: interest, q we espcially if

some incremental form of collection can be developed. Policies for handling ost ofmemory

conditions on processing nodes is also attractive, involving selective mlp4tioa of objects.

Finally, load and resource balancing policies need to be investipted, -aly sin ce

each processor can quickly become overwhelmed (being limited in power and memory ca-
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pacity). Simple gradient plane approache. might be attempted where load spreads t hr

it is lower. Network analysis will also be an important factor.

11 .3 Hopes

The Jellybean Machine has the potential of being an important step in the development of

multicomputer networks. It is my hop that further study will be eacouragud so that the

difficulties of machines of this gene can be resolved (memory shortags., expaens ame

translation. no caching of mutable objects, nded for resource balancing, etc.) and they can

show their benefits as scalable, programmable processors.
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MM E1.(N0S.M] ao u5 p COPa list variable

a Moable ms"ag r tIan by Nukaing eft disla bit@

OCC -MVSIw*SE a ES <- All bits Wi' the

MM~~ ~ am,1sInvalid address bit

AND EIES.EI ; Nuk off disable bit

AND EI.ESEI s ink off disable bit

MW1 FALSIES0

* SACKGEOuNO Loop$

SMPTYJAW.?:
IM11 SUI'VJMALT

WVNV-CALLz

PUSMJIC

POPJUC:



alai=



~ SSSBSSSISIISS*16S33SS~aesagu~aas..asaah~~a...b.a............

WZT! (ftatinatimn-aiirmu) (data)s

izlTfpqg
MM RD atifation oirgaa
oK RD1S~~ I - I%4k tO kelp Ion bit&
mm C A]UT E s E (-maaw hegauVrA4 " :TG 11TPa; Cast baaarInto an jfl

POW OlIe ; RI ong% oa"3 1 In%* A

RI.Rl~t3 I re weat t w4f gaaga,"

R3.' ,EIIINUIts.ai

(lit



....................t .....e ................. t......... 4 ... . . . . .

WISftt.A

MIJ (2.All ;," molfty nodr~
cC SYS ISIMM <- mai to Uee lqift

AM 31,15.31 lo1 q uU
ou ai. aos*? 13.0 '.fawu
SO= ts~3 It ms Io..g. ut.1$
8mOO
VA 41.1.01 * ov wmwu.~egt1

"M Oa2 * lwitalift its.
m C3.AS2 S"d "Oly ftsaw

IML 31I.Im3S Is IMw - ftg I f~
ST Ms. ON a i iS ai -W~

AM .1,0 ZIIt Smwo .ON Isis

amU (3M23,O ffne) ,rd
su-o



* ALJ~6*-Mesaerout ine to run a nothod

CALL (Metho-d-W (thd-ocific-argolo

CALLMt6
MM4 (I.A31.EI ; Id (- gqed-id
XIATI N2.0.A1_MpETIO ; N( Method address
CHEC 1RO.TMSIMT.I j ;is tais a hint?
C Z: IP p - offset of 2 Intomeas

CALLnSD:1

SEDM -- Message routine to take an object Id. and sand the Object
* referenced by the 10 the selectel amoectaresi. if the object
* Is local. the method as run. If the object Is o manother node.

wen forward the mssage to the nods.

*SN Cselector-syobol) (object-id) (*Mgel

a 5 Do" SifAT .AMP to gain cam

LSM I,. -YS ID0 to elT.111 Shift Ill Un Nowme dow
AND fi. sys-jb~ir i.40 Jsat kemp no"e #Ne field

Soo! P0MM TOjuImNa
FA I Send deet. nods mrs

sum R3.1.433 <2- tndwtolet in ew

OfA rISRa Are we at last hano?
or at. -SWMO-m-Rwo-IT ;If go. lowm Wtoam
$06 CmO.*A3 Sand item frM WcMA
ADD R0.1.40 Increent 00

.W9 CO.A3.NO 40 ( Mogeae header
AD R0.,S"S.LENMWK.R3 R3 LenWgth of meelag
___ CZ.ASI.RI * I f: Object, S
XLATR RI.M,XLATIJL ;M NS - SOund Volvo of obj ID
UNIL *O@.SWNJSJ~TJS If raw not hero. foaurd me
CHECK TMNT Is Volvo a hint?
U1 R,'EUdJSI..OIW Ifto fraw =I to Object
sum R3. 3 R3 R(Lngth Ofag
MM 01,A oft , asyd"@to An

MDVI A RI <- ""der of object
I I Shift CISs deaAD Rn .Sy cia &sjss.Mi RI (- CIO*S

DC ~ ~ ~ B a1 SETC~V (-Si1ts of 91l04110 field
Lon ulI"u Shift elam field vg
an Rl.Co,433RI ;Merge with star
VVMB RkI .TALCS,I re T a a coloecter
ELATE Al,. ELAlL "OD of C- Nothod So
DC 14S107.1 LJ=((SI-LOINJTS) ; U - N We WOe lengh
ADD R0I .h1 RI (-Lengt of CALL moloege
OR RO.I.A Merge with deaaag length
PWA N.RI CeM Mthod-IS to I
CALL. TROP IS TOJOI I (- "Wo thed-W)
SWm uItI - Sand node. hoder
SUB R.1,0 U (- LGRPOfarWV
ai X3.^SMMWSM_..LMT If, no as". sow 104ad meto
weS at Sand Method-g
"M 3.N a *(Offoettoatgm

SENDMeJIULCOP

U.12rema At erg t effect
PA* R.1.03oma lngt
Si 43.SMSWJUSRJSJAT If last erg, sand 6 end

aR R SOnd erwuet
U SSJUS.LOOP ~ Low

URSJSJ. 12 anUWHWO



kwo-mme'--ump kwIer to 614600. WA #Ie I bq 1 w * #a"ft ,2
41mae for.mlbsem"* etoeq. "&'boom)e~

afeallft btag mo Isg wag tawS issv4 %r itt

WWNg=g (C~US) (MIGOW) tgtas-0f418s) t4Mb).

m a wsmiIt t- Om oe"e

'vI iit da- Imeis "dam

au~~~ I"t~ £ s- Uspe rat Slus

*A mttmIg
cc~ UI t- 10 of Iwb wav

I" ooa ~i4m
see As IU4 ft asum aia. ,':$]n um)bSaim nft~ aa l
MM I $a =%hadsm
suwmmn SE'



NEJ6S 1..S roua~ tine to create a Instance of a certin CIS" an
b u ack thle to.

( ~ itv tosoa-ef-ebjeet) (aas) (imply-id) (reply-salStei) (eetiena-dma)S

ceg nog~ (- ime o object

XLA'TII 4. f. UAIL g At 4- Adess of object

; as* Copy Optional Date too

Oc SI, It~d mec low Is bit no
"M C 0. X3"jVC1* M teeppo ter
AM q:A."(- leawt of womp

~~ :IZoneift opin dt
10lngt in a

"M 5.11 Al <- off"& to ite s
mw 2." " (- Ofet lowe wjet

jNvjgslI
Si U.'A JiEX1Y tf me date left. eWitl
OO ]~.a A 4 ateree am . to

~Am al'I'mi i tnemen off'sets

3 MAl. I- IS 11 mrply Id
Oc Rf- - 0-KUI Fs 4- 0or bits of 13

ume las.m - Sift nMdl dam & WAt In 0
I"i A Send animation "ad
Oc SaS*(IISJUS(MYS.LILI?)1 s 00 - SIM oemep header
I=3 PA 14all Anthe hadgi
am A31 Sed tm togst id

IM :A3Sae tme select
ii.AkSend not; ONi 1 a final W1m



OWNIAPTJWAS-- Laib #0 a OMW - nI0

m AW I in< &A

"m lot'ftI (-tSqmU
VLAW W.E1U RIAGOSApqs *

an in a

.JgSUSWTJSWt

* o~inmrnM N m.*-'
Im.,*r

w ~ ~ sow u ?$" mo



; s0.1linA31FL' -- Stage use intd in an MbsIs OWE ratsrt u.

sqT~~ummt.~y CathedIS)(wagsea-data)s

bisud: AO abslutoe Menheed

c S 1...LU g F04-Paekekoegpls""u
ASS 5.A31.0 I a U(_ Leng, th OfMSePL

R2 5.15 Iwsserom ft~aa eade 10
"MU CLAk*JTw~.51 I R1 4- close if a Nte"
CAL ThW1 SE t, amb a Naow" obect

)ARWA.TEn t t (- Addess of Oject
Oc six 1pj 150(- CaWV bit
OR No ' ,0r ~ Jj.n3. 0e4- MW- morbad as a cmg
mm RSWC@.UTJ.AEf I Wit Object as a copy'
pop 30 am b atr U(l0" at MISS)
VA3 00.4.F0 a 4- Lon o amused w/o hdra
.- M 4..t a See 4 aIn isw
si4i 2.4 a1 RI Destinations Isam

U 5S'tL...5.UPUDt If ft wv lonph. o"$ loew

-" At] Pea st word in no ed sbee
AOD ft'I'mt t* W dosswweno MGMr
VA ss R Iam osremt lasgth left
a '"JUILLCS t LaeS

N C (?A3],5S ; wS 4- Oriial MOUe-IS1
PsA A.41t al 4- Nase am lesowd a,
am~ sS.41 Enter In SLATEI leeks
MAe XCMAM~TJWMLEJWd,5i S (- WT Oita Now Kul G
CAL.L 7JCALL &K ntrIn V
Oc VA5.JELUJM

"M .SI5 I OW 4- Opfret to Ow"e esus

POW @ As S t Ik 45-Wrd On of sam
me 1.43.61 RI -NaHe 1 ftm seewa

AW~~ ~ ~ Uai~a I 4A- Otteet omt mesa

I Search then Natsed COa e direr.

ma nasa oerament ofgt
SIM 1 .MAS a Imaf s luemoa

a RL I It setm Is N. l

ova M.MS] a Sat IS To NIL
APO MIXU a it Offse to get I st

MM j.A03.3 a R3 4- (car wait-list)
in.CMASJ Set %sit list to NIL

MKIL. "V =wjx~ Ii esstwt toSt alnl. sad%
EA .i a 11 (- This NSm sa I Soda ee tthsfo

m Ses n" Rseamer
$an I S to restar

S1LA11 A$..A~sLUT~OJ Gtaess- of Content
JW_ 4-T newt cut 10 in list

If net in MMM difetemsm oeelfi list. Wse Ow to held

a the Premse oesmm I. uAsa Vse Soraft Is t. Wse thm
a pentra to dolfnk lee fe. gse asiMd list.

aNo previ ous
OC .AJCiNLNANIT ; U 4-d 9a- ato I lst

Mg~ ~ ~ 53,A 9(-10 Car of owfsloi list
SJLIOP THin LP

INL S3qJ51 a ; Wm list NIL. sal
MLATE MAtea At (- Outsit MA-i(UsC=1ff~c.*A1.. a iting for ths musted?

ST us..s.Iju~zmgIt ft. ost cuat out of list



mm 3.33a PrayI ( um
SO COW NRT~TD3a 3 CtNmeit cta I ta te

wIt- geg'W tm Ml fi 1 lsb. 16, to",

oc C4 (- AW ofoft3
m" a ~ ~ ~ -AS]? W"Itls t- viaa.

Po MT~~~iLS aaMe am3 0

- -z .- IL4- urn
PAI.CW sn Uhffer.M1 ; pa( I

XLAII f.AI,X2NA13 -fe S
"M~~~~ as~ -- ftwSm

M NO." ol 4 This m
335 Has aATT00w o Sa"0 aom t %big no"a

mWa .m Mo
^* *.3ULla SU s amWDiMITIM-MAsM Tg NYj, 1(0InM tm", "



iTMI.GWEX'J -* Trae- owntrl so a contmt

Runs uww: AD Mlu a

MM V.A3I,48 ;U(-memu"Z
CALL wW an to T'omat S.aft"u

KSTMIT.CmT.Ih S

(



wommt.O&WAC'j -- moe so object to a no hae

ummu.oaCT(objest-1d) (nftaumbbi

bRss urear: AD Absolute modie

Mgi1, A~rS a a, ( Object ID
U (."tUS Al Ri Cst nods %magr

OWE CALLjEamiTLOCT.0
CALL. ?IA9_MCALt. Migrste the object

* DWIE..OS*CTMG - - Lot thia objecS romida on this nods

ZMIMMTE CSJICT (object-id) (pmeieue-meidaee) (object-daws~

Ron* undar: AD Asolute moos. unelmolied

flpEML~bEC WS:
K" PS Sav 8 Interrut status
m" T"E'ft 43 (- True
MM 43.1 Diasbis interru
MR CSA3],.M as c- Massp theader
AND rA.SiS..LEIUUS.m0 oe <- moseep 1uagth
PUN RSe Sams moemep tas

am R.3.10 s (: Obje"t lowth
PUm MCSA1. *1 (- object heoar

LINANU ml-Y L S RI Shift claw. im
AM alSa&S~eS~ 4 t-class of object.
CALL TUD eLOC; atA ser bas amp

CWrs3.U RU,1 As( Object Muor
cc SYS MGM&_W@NS 00S(~ 115abl bit
am o isb Sa" 109006bit Willow
"m re isC 0: #"a; Set header of not bjeet
PonW l (1A33,110 me <S Object ID
HM A&.Rt Itl (- Addrese, OF blook
mm11 VMRt Staw 100001 In EtAI Sable,

1WA NALUaMJN56%RN.I ; RS(- EMT SteWas Yeal 5
CALL. 1W CALL &eKe In EMT
NM ft.CI.A21 Fill bid slot with 10

SAS US.A3 In Offest to lst a" W"
SIA 10.4,10 N OS-ffset tomandof dent

INULW CTLOOP:
ISIALI R.a.0 i At first data %ard?
of U1-HNMTE..OS&C?.PT It s. does
Me Cal .ASI.ft of <- dote word
1m 42.14B.At] Put dao" tor In object
&AB VS,1.4S aOurement 10
Sw al. 1.m0 Decreent Vt

ON 114IAIOS.BCTLaP Laop
1J1901 DIS.EC? IT?:

OP~ T ;Pop Iet. disobla flag
cc MUSSYS UNCI (NW..inUIOD1AT UKC(51..LLSJ
go ra C2.Aa],% adm preeleu noae0, hoar-
"m AM. no US (- Thismeels mUor

S 30A~M ed.abJ ID and thms node 0.

s NCWM NSATjUS -- 11stify old ropdenee of nw rest deag a toll birthiesl

NWIUSIDIWLA? (object-id) (rvosidmow-ada)

Owes under: AO Absolute mode, unbhmed.

NNWIDIS.ATPOSt
1W 10.00 ; OP to pirAmet mm~ Fault
PO [1 001,00 tS (0- object 10

.m2AS .41 In (- 11mlses Nodo

Now XXCAMA?..f. 0 U3,C- Nw~kuI il 3051
CAL TUP blAL ed In
"m (lAiNJ.ftL al~ (- object SO
LIsm .- M toY 10 SISSi gsift ofthf d Um VAS dew

Im 1.T Yl.m wITEI ;MUJCS tw DIT

31.US SA!R ealr to birIrulut

"As So" nw residnc mft
PW PS.A 4U(Ttndf



p Ii Snd 0 as PaOVIOUa raasdm

NMOMSZW , _ATJ.Sw~

UDOAIUNhIIX.MN - fttlVy the SwrnWVU ofl ~ "M 'M W

: ~ol~~htsOS(object-ld) (residance-mods) Wimnot
* ms~ under: AO Absolute mod. uniOked

m I A3].M FA O-bject 0
mm .I93 2.11 Al (-SalidMu Reds 9
mm k3 43 N3R ( PrOyteum fAideD
ISIA Va.. was owt wwaIly wer?

or Q.WJIRIOJSm If so. ds"81 .tad agatn
OmTE MGMRI Cae No ) I
pawg aCALLAJM1E.RI3 a C- UIwfNYU mall 1
CALL ThW NCL led inWA

0C MS.SY3..WCI (OSECJVAES((VjI-N.2 )IRui RiM" SendW header to r"IdWne
UM dIA31 Seed oject ZD

* CLEC~jMLL~S--Mork Ute object maveble

* CI.JCTJMWALE (ebjec-td)

* s er *J A$Aslute mode. unchecke

WL[CJCVAIft
MMI1 a0." ; mop to promt VY tult

N"M CSAU .ft A <: object hede
XC S W1LIOW At < Objec ht 1e bit

me SIA.RI I <- SeV064 bjec t PSede
000 OAI Put header bek in object

-US



3 SY STEIM C AL L T IAP S

.%,Tt -Call an etded sysmSmeli

Mewep unde AS SSO lute 00le. Wueseai~d

?.uglwea 43

PIN 40 $a uIS
De osKIxIT010m1v a (- hue of mooesa
ADD QO.R3.10 Is fteaters 0 aal *
NOW (113A.11.3 a Mem I-No roottme IF
POP Pilaterare
MOV R3. Ig ato WALL routine

XCALLT 10:

SWEPTO -- ee 3 l 0 rIun-Morked oects 10 the hbeedow
towr" the. base.

Runs under, AS saedow

SWPT:
m ^VEP..Tl11RST Go to mai Deft

_SPT:
Oc VASPUEFTOP OR (- 4PEWO
HOW RI l.tE0.AS] "FliUP Now SAw mtgatlu
pop I

pop Ri
POP 10

PUSH5 11
PON. m13
c v" #W am 6 <- Afirebao at soUi

#1111 E3SAej.E a 10 - Initial sem-m 1112.1111 11- Initial dunS44
SWUPLOO11

PUSH I
PE TRW." Ad 4 True
"M 0.1 ;Prevent intarrwta

cc VR TC pl10ro 4. NioW
MVE 0L1 (- hid of "e
aE 52.X9.0 ;At or poste mid, rmpt
or Io %mWs-vi It se tan silt

S1Ww.P-ON~llmz
Oc SYSA-W D~e3 0-eletionamtlew
AN NO.C111.A.43.S onl 4 y deletion- N
u n 10,WvY 3 It rat duboed. sail dija
AD00 a 1,.110 <- Oftet to oJuut 5'
mm (52,ASJ.10 1 (- Object ID
PLONK 10 ;two ject M froa on",

M J1 CMLITJR.RS ; ow SM'.
CALL TtWIC - -tmojetMfW w
VA 11.110 Pofta be to Go

PW CNR.All.ft no <0- fmSbr of oject
AND noM~eLWA.111 011114- LSIAf of obsau
ADD~ Wf ft "t ae to nwtI MA

.W.UPI1ATE:
111 ft.U O to Rnt jlart4mnr

ov 10.8WLl I*Jftr of obL~sS jest
ADD A.0ju 012( &No? are
-R i.ina 1" 4- Ind a0 dmu

Seti. 111.111413 Dom arm a duett
If. N.jninrMS 3It so. j* to flit sjort

fric "0.- M W yLW ;It 1- 5 0 oninue ~w,
."4 inV ' 3 W 3,T53 ;i 4 - doot ad << I.M~

HOW cm.I.a a0 4c imedi at es.at
ANC 00.11" MJIKI of 104 asa0bjem

am 010:0111 N.1111 M"F 4a 1~eetlWVas a 1. - ., 1 Top a an addraf.
PMi on ft" a



ADD c.L. ; A -iD

mum MORI 1 APlSndtXb1M

CALL 1NW'NCAL ;bW in AT

"m U.MAS 0 libelher ofobject
Am(M LagAN Of abject

OR* .SwapJTUTE
.SWEP-cPYLDAt

VA M.I.Ro
sup mItmi
sm NOON~m
HM (C2.A@ILR3 ;Copy' a bit a, objeft

14" R.Cml.AM3
SW _VM : WPUVLO



uE..@TXT..T - Creae a contort for a wwease

This trap gret a eantmet object ~ea given Woo sin5 Of eOW
* Am logale tan. The coients aote leb mI""

* alet * 0 ~
* Start 0 : *S~t~
* start 9 2: 1.tsepat (OPP"e free Hoder t oe")
* start 9 3: lmm-csneiI
* start *4: j-Aeasre...I
* Stst S: I US"g I

-t oagtf soon Inso
* estate # 1: I 10S... (method to)

* estate * 4: I C3..l....
* estate + 3:

e state # 6: W3-
* state *7

e stte.: I_
state *0:

The address of the block Is returmed In Al G At. The aaea ng
toI regsters (51 a Ice) are filled with the cest ?te
MU IE A NIRXI-10 fields are filled in IVthis reut. use

*NlWf-CNTE2IT slot Is til1ted with NIL. Iti Pto aol icationmieed
* to I'11I in the 100-3. UA, aHd 15 slOts Sine thNse VslmW MW
* Corrupted Whie Is n the spo. 1W geem. WOm ?aTX-GPT 041t
* filled in with the 0"0ae frau the he~de of the Sentes. ThIS field

cane be us"d to wo ais buillding of a pointer to the pote eftie
* of content.

if thes soes needed Ies toe nermal coentt esen (dftined
by CWMJVWU.S1a). then a fat content Is allocated off of the

* frem list If possible.

MUPss under: ADSabalute sMds. unHeOcked
Inputsi to
Ou~tguts: AI101.A2.10l
Tresies: NO

Su"I *t So" al
PUISH Ul ams a
PUS" RO S"ewa
OC VNCFU LIST 116(- ftu of Cfrestst

npp e NoIfestere U with Ow~ Ois
CT UO..T-MW3smLS lm I to site )o normal sin?
BT RI.'iebn=TjTTMsM.= I If ft. allecete a nAe at
MW CM2A.AS11 mII (- let etat In fme list
SOIL Ri.^WS6 T -TWr NLOC= If ne a"soreal, UMe &IlIn
MLATE mI.AI.XI-AlOSJ Al ( Content AdO

XLATE II.I.MELAIU O6J At ( Conte AdW
MM (=IT IUXT-A w A 1. AdL a Nmt Contes

"M U.CPd.AS2 Psint cfree list te neart Ott
HM MIL. f <U- IL
MW~ M.C~ffNWjf _catFT.Al ~ En Rea Mns start Wt (for go)
POP Sa
pop 41 aduotre at
POP IF Sw

NI~EW-XT TOP ALLOC:
iASS UM.U.U Ad <- Off"%t to potat
Pus" UO saoe etate offst"
ADD U0.=NTMTE 11121.00 U a . Total cents obj sn

wa mmd-wrir.1iI Al 'entent els malue
CALL I~ Oft"is a new object
XLAtE PA.LAILuej A (- Adgleof oject
ELATEI " AI.MLAMOSJ Copm to Al
pop U *Sote. petste offset
pop of etoetfa
pop 4l Anhsee at
PO ft.CONTJS1AIE.OWUT.A1] P ill PIAIU-4PPUE11T Satd field

14 IL4 AdU (- NIL
mOCNJ6TM~u.l Me nest contenst

POP IF



( jEW t -- Trap t@ generate a now object

Takes tile 21ilo Of the Object in RO and tihe Class In III and 5llOCUtos a block
* of mmy for thle object and assigns It a unique ID. The 10 is
* returned In R0. The header is tagged as an object header. a thle
* clasu/leitil hiold is filled in. The ID slot is filled withl thle
* newly generated 10 for tis object. In addition. tile XLATE cachle
* SA? are updated.

Runs under: AO Abiolute made. Unchecked
Inputs: 10,11
Outputs: 10
Trashes; Ill

NEWTUP:
PMU I ;Push Int. disable flag
PUM A2 ISo"eM
PUSH 13 ;SeveR3
MON TRUEIRI ; (- True
MM R1 Oisable Interrupts
CALL TRAP -MLLOC "alilocate mes am memory
Llbi Ri SYS-mLeN.SIS. Shift class pat Ion bit&
O5 1110.11; MWrg ClA"s & length
VVAG IJA .TMU EA. 1 Tag class/length as objileeder
"M 1It.C0.742 Fill lot slot with class/len
CALL TUAPEISD generate -n Id into NO
MINE A2.41 III (- Address of block
EMMt 10.51 Enter 20/100 In XLATE1 teble
MWE XCALLUATJNMINEW.1t3 R3 ( - NSAT Enterlim. Xeel 1 0
CALL. TRDAP L Ento%* In WAT
PmEt no.Cl.*Zj F1II 2nd slot with 10
POP R3 RooterseR3
POP A2 Restore At
pop I Pop Int. disable flag
POP IP Return

a.V.TPN



Run tIunlder: AG Absolut aft
Outputas R1

XLA7W 
; .*wAxW .ugag 

Mil IiAM"IATOCCK 11.TM.*01M 2  Owe tAo*1SI

I I.OD~XT: NR R It, -( This no nftw~

aO 
Rosheter* ltpop IP etun

01A1L'±~p Primitive AMM Clleaat.
tab. long"l Of bWook to ala"Os fit a and Il leoan" & regti" %No* UlaCin dsvY- T"e Side" af UNm black is ratanmeg is An.I f the bleack couldn't be allocated, As is et fnvelfd. ShesuI* be oaid With iftanmgite a" o a hepI* plaeet
lain.ufder: AO shaow. uncheed 

et

Ma *I

PUMN R3

MASW ~ r 3,1 
41 - e to Si

- rm.M].I2 (-F~rr
VA A Tli~ 1 0 (- J n
-1.o~ - LIPeddreeto

of 43.49,00 < - MPGe ofEAor PA. ^JMWtC &A0 J WUld OWW bleft be gap off?~~~~~ If~y ",t ~1 it as taKg at lopr
on 

t Obe ini te lwap f,,tet
00W T 

C@* at tte A Mg

MeP 13 *ft me___ toPOP 42
POP Of
POP go
POP tP

CALL TW*POU 
f*fr f



( FREECOMXT -- Free up the context in W

If the size of the conltext eaala the normal fast context Size. then
wem place the context back onto the free list after Allocating a

* new 10 For It (in case of late arriving context replies). thwise
* the context IS make for deletion.

Runs under: AC Absolute Made
Input; 101
Trashes:

F*EL-CNTEXTT*P:

PUSH Al
MW 101.10t
CALL ThDPJREE..P9CZPIED_.CNTEXT
POP III
POP 10
pop IP

FMECMETTRPEND0:

PMIEr.PECIFIE0 CONTXT -- Free up the context specifiled in NO

It the sile of the Context equals the normal fast context Size, then
Wem place the Context back onto the free list after Allocating a

* new 10 for it (in case of late arriving context replies). Otherwse.
* the context is marked for deletion.

Runs under: AO Absolute Nofe
Input: Ito
Troshes: 10.1

PNEE.SPECZPIEDCCNTWTjNP
PUSH At ;Save RE
XLATE RO.A.XLAT_J ; At <- Addr of context
PM E OCILCTJMC.All.R1 Al1 (- meawe ef context
AN OkiTJENWK1 <l - Length Of ontext
1* 11.4,01 subtract 4 first ward
soe 1l.WiTPSA"EIZE.li ; i (- User spece size
EQUAL Rl.CDNTjIOSQLSE.Ri ; to uaer spece a nomial so?
S? 11.YULXFCOW T O,-P.IUE Di ait so. aso his to the list
PON (0SACT.A].l Al (- Nasser of anm""
at ll.STseJowJU .l Set deletion bit
*M MI(LXCMA]ovte hdr back to object

FREEOTEX1TTRp_..EEPHZM:

908 No longer need to genterate now 10 s*

* PIJIG 10 Roo 01fro cache
* PUSHO I
* PWS R3 ft" IRS

MM RE3.1 Oawle Interrupts
MM X@ CALLJA-PW.1 43I (- Purge all 0

* CA"L ThAPIC"L RU Me frt= MAT
* CALL TRAPOENIO Make a of 1

P" '@4 0.OUACT..I0.A2] au e n to lot in o nt"x
* MM% A2.R1 R I (- cont"n AIM

M EERO1.11 Mke now ache binding
MM~ A2ZItl Al ( Contact Address

* MWt XCALL9P..ENTER.R3 £ 3 (-Enter Nll 1
* CALL Tw-APN LU ;M Entr Idng in MAT

POP R3 Restore R3
POP I I Mesters Interrupts
or. VAIM_EL ?AI ( Offst to CFE lest

41 ? 1 CO4NWi,3=, I.TAM3 1 put Tn list S@ nex cumEGOJw 2w c RIu. t1 (- Object 10
MMW IR A].Z 00 h IIat (-Contese. to

POP -TMleetMa s At
POP 110 etr

P3EjPCIPtiEO.NEXTTW_..E1:



"M cm.ftl ;f f 000 Lm
Mw C

- tt*c 
M

UIN

wm , LOWC- 
Ja

CALL ymo agm
JS,0U3?

po 4fp it,
fpW lp



.......................t.le........no

Returns tle Version WAWW In 4. The version hWW 14 On VIT U"04 value
* where 1i11t 10 bits hold the uMjrO M vINroon In , oy 1|

Sit& held the minor version number.

Runs under: AO Absolute Hefd
Output: Io
Trasioos Znter'ally: U&

Totally: Me

VRtSZCN.'rP:
cc amonyemstme

POP IP
V(RSIONTRPWHO:

KxFERx.W -- Transfer miscutimn to a contowt

The routines XPER." OP amd XFR ACATW both transfer control to a Content
*It~J rOs-efmnood by virtua or lyslel pointers. To osfor by to
enter with Iin Me. To transfer by uddros. enter with address in Al.
The cont t is FRUd afterwards.

Runs under: A Absolute Mede

I Inputs
Trase: Locally: AM.Al

rtotally: R.A1,AI

Input: Al
Trashes Locally: ROM

TSI ly: •WIAl

"VoPeturnas.

Xi,'L, D -t.M.IP:
K x ,,ATEO *0,SAI.XLAT56J z Got conteLst sil In Al

KPMtADMLTA:

POW IU .U , (- True
PIN "I iseemle Intarrugpls

JW CI OCTID.A].U .5 (- Contet t I

"M M.ot.AO] I $we in arra4 n atenstI
MM AI.1O I a (- Pinte to e Oatde
LSN Ito 45 LIILIaII Shift NdW Pield do
AM , PSO.:imf ATIWPl .rA1l• Aitn Of'fet tO potsto
ASM ..SYSUIL3I .U Slift ar field iup
ASS 5O.CCCNTJTAT3M .A1 ].M ; Add In pekoe lempt -I
ADD go. I.U A S (- :(po..XpGoIlen)
MM O.AI Al Peltor to potst

XFEAACULSTACG:
MOMt 0.R0 *S.
WRITE RSSP * Plyhl stam prepering

Per SotwAst reem
"oM EPSTATE_IP.AI ].A$ I No (- Old V from content
PMH so I Push tP on stn

MM11 US I-0.A1 ],41
FI CPS1AMTLI.AI 3.5

MW CPSTATLIDAl ].Ad
OU R . rW

I 11AP Al I:00 ~m
"WEA PUYAU.PIA In"M PSTATE..PI.AI 3

(PSAUP.A no 53

"M (OS.CTI10,A11.00 0 (- Content 10
CALL TM~d.S1~Y:Free Context
pop al AmPoore I
pop no astore I

IMYAL Invalideto adeas re"s



"M 100.U0 10 (- haw* Prim egnqge
imIL iS.-IwR.mftCQLjrM It Mo *lst a*I. don't I1C__

lwA l

-A 'M (-Ad

* WJUJW Film the Sawt" gst, of tim ID fit ta WT

* agis ~Isw is im"sslaato SIS 1tu~h

The "D o to olma fir"m sunte t e gtrtaVlq tam In
n* w.iIs* oft detoi IDj sw,m ftr. M TWOs geIu to

ta WrnSm of I"s WW tae. 0 *"i amm "Mle #Ia Ffbt.
* A t mim OWE Na Of#sf'at %ftef If' 1iemf

"oa Stf te ONe IS "o "t a aft "Ilm to. 0%f a1 ul In the
hel 1111 "D urn a bgAis to lt ""I intt ~

* h"i IlLft * am Iwon * f I Om w

*It the 10 Is not In the, brat, 0111 I,s ni lot V.

-Camw.st the t In" mat antntil Ofe NOW late UNa OUT

1.81 is-.m IV 1(- to)),a

Lim *.41.1

LINI 33.1,14 o #f

PO n WSiam to. sn

AM V 1 a bol m* Inteang t*

; Ssaa-a for asm ft starvang at sfft

Si~ ~ ~ ~ ~ ~~~R a"JTP~J~l ; C.ImrsJm a1
go0 R mt113 All am mw MO mmiNY W. ~tm.jn

or w.-.hTIwL If t. Iwo

we no t wrn arauhl to top of an

VA "t fttat to Mo1 to~ SIA if,

If nt I 1 wolf. 16 a re l

11L2 .ml- t
MT 

40 O mgo 0Upo 43
poJm p a

POP



to I886449* 66:0IU81 9I9I88 ,eas Ica**W "

(; X TitNDI[D CALL. IOUXM ES

BRAT _NTR P -- Add an ID pair to WO PAT

Runs Widesft Ad Adblute Md. Muds
Inputs3: MOM

Tkes Md ID/WRt pair In RC & Rl and nters the P01. into the MAT.

BRAT iiwNT::M,
PN A

PIm RI
OIL" RI

JM "In MR T-O
mv mI.m I (- M

go VOJAT M * (m- Offms to MT veilet
CmM],LII *I (- v..mu_

Oc SYL ITS
L l i mI.t. Shift IMT.IA to uiwr ftild

OR 1.Cme.AIOml lmA (- BUT beo I length
VTA RNILaa~m Al ost Mlle Ing 40 O

.M I1 I l IMT Oa 1to4 AU
lo w 42.M 1 0 € D st iop Paed In
VM MgAt t ( I to o "m wOoed In

CALL 1W MAT .PM Flo v m a e tW " t II
wal.N ^3"0NATJ[WToVK ;I? offset to -al, t gt t0
" M [ R 1,A as <t( - [I (still I n I)
NM NIL.Rl il (- NIL
CALL TmWIAT_6E t find offset & rotor" in U
311L U3pATnU3U It oet nin al, sti I I redo
CALL TSAPOZE I It no fem lso for nw.

(- ,liRO,] a Put 1) In lot slot

MM .[O.M ] sPut M in Ind slet
P. e

pap me
PW 0PP it,

emA jrgmmWt .tJl

€W4

!5Al



M* iNrjuNjPW -- Af AM Ik .&AtJ

*ANAdf A@M MM*A.koWAMO81-

a0 R

aW. Ra ss~u

Pw a Iso
PIM 1"1 aU.h

oc M a W. <- 00*
mm VA(- Iurtble

on ~ ~ ~ F* I N. IMT ft." I Inup.

PO mgLma~

~L 1UPJ Wqal~o m
a fta 6w4

COL 1 4 em a s ;; g
jwl-w ~ IN 4

PM at

NP IP



I I af nn ..o.... ........te T t e,

Ouns UnIa: AS She do. mtheck4 mde
* Inputs: I0

o utut: a

STak the 10 to lookup In the MAT In AS. Wben the Co4eewpoWing
* *00AD value Is found. it Is returned In 00.

OIA.XLATpXTUP:

PUSH II1PUSH 42
PUSH EI

PA.[ D2Ol~ *a Cl- to

c VD* IRATM NO ff- saet to ST variable
MM CAA.iI gAl - UMT.M
Oc SYVSLSNSaT
LN II.II S Shift lA'Mr to OW4 field
c VASMAT

am i 1 A.Al .ki ; 2 (- MT bae I lengtIM UI.MJ0_AU.t1 i Cet lint4 un SR
HM , R.Al M ive ? p W Into AN

CAL. ThPJMITP Find offeet A return In AS

IItL O,-_IIT_XLAM_1 M ; It AS nil return the nil

M0A5 l OS.A i3.AS
l

; Pick out ADI & return In AS
_OAY UXLAT1_ TUIN

POP R1

pop Al
pop IP

(



@ MTJ1E1W .. pWWg m tAM Sirt, fres Me MY
*M un.MP. As saow. Iaong a 40

MW~ with &D to WAMg in 0. lli r-6400 ltSM NitL IntP 6th to &D am slot ofWe binding in the table.

Plt in
PUaN 0

OC VAJmr WA in( O""tg to SM varibl
HOW COMI2.Ei C (- USTJM

Ls" RI .I Sift MT.. tieOW fildtc VNjtLOOMN
an__ alcjla 0(- VT bass I 14mokh

bTAG n:TAAM~n ; at IN In"te AM-

OI .Mj~uwm ; Ping orat I tale, elm
son "S'alT U ~ I Do t ~e -er
Oc Mile
NON 40411-4S
AO m.4lA

POP a..
PCP Ale

Up a
POP Ad
Up 38
UPTP -IKXN~~



-------------------------- ------------------
MIGATE...OACr_.EW -- Takes an object tD and soaobject to a nods

The In of the ejoct to migrate is in 00, and the destination node
nmer is in Rl. If the object is not local. a HIGRATE QU.JCT_ 60
emssge Is sent to the residence Of the Object.

Runs under: Ad abselute wode. unchecked
Inlputs: N.o *I
Tras: R2. R3

FM Iso"e Old I-Disab1e flog
Pmm TWR2 Z -. ru
mow Ia.1 I Disable interrupts
XLATEI 11. 2. XLATE..10_30j401 32 (- Address of 10 in ND
PUSHN It SavetD
CHECIK 02.TAG AD3.R3 Is object local?
DT 3, WX&RATg_.O*.CT..WCL If go, nfvvto it

M£O3ATE.01.JECTFORWAIJ4SAGE:
SEND R2 *Send residence node 0
Dc MIN: (MI1GRATE 0&ACTPEGC(SYS-.LEN..ItS) 13
SEWD 30 * Send message header
PoPe RO maRstore Object £0
SEP60E It0.1 m SeInd object Id & node 0
pop I Restore interrupts
pop IPII Return

MICAATE..OS.JCTLOCAL:
Paw0 N0 A "eo binding frem cache
MME XCAU_§RAT-JURGE,3 R3 (- Purgs Itohl 0
CALL ThAPCALL .Purge Nl f rem BRAT
AND R2,SYS L~I SK.EI R3 3(- Longth of object
DC MS:SYS,.WICI (IMeIGAE.OSACT_..PW<(M n)TS
AM RD.1R3.3 RD Add T=ngto object
ADO 40,3,.310 *Add 3 for hdr. 10. this node
SEN2 11.30 Send node #. header
POP Nt Ito(- 1D
3END N1 Send 10
mov P41.3 RD N(- This no&. 0
SnD n0o Send this node nPi"
MV 0.10 *Current in1 0

MIGRATESACT_.OCP:
MMW ft2,2 *COPY object addreds to A2
SIS R3. 1.R3 *Decrment length
Si R3.-"£G3AT[_0SJICfjAST aIf length o 0, Send last me
SEND cN.A2) " ail out object world
ACO 10,1.10D Increment Indem
PR M"IQGTE...OSCTLODP Loow

HIGRATEOiCT_.AST:
SIDID1 EN.A2] , Snd final object word
DC TAG 0&0IEAD:SYSW1JU(_A1 n (- Deletion mark mO*
opt in,t.A2].Mo Mark header deleted
PMM *0,[O.AZJ Store back Into heade
POP I I Restore Interrupts
pop IIP Rturn

HIGRATE OSRCTXTep END:

aessessssseeseessssess** aIsstsss*$sessesessvaesssesssaesee

EX C EP T 10N N A N 0L RS

£NVAOAJXC -- Exception handler for acess of an Am regiter with I bit set

Ouns under: AD absolute mode.unclWcked

tV*03j11C:
FLUN RD
PUSH 31
PUSH 02
PUS 3
"Md TW.US ; 43 <- Faulting instruction
DC SYS 0P10"00 ; 10 <- Moak to keeal ON Field
AND AR.RI ; R2 <- PO field
DC -(SYS..P_6ITS *2 *2) 0 RD Sits to shift dwAm
OAN 33.10.11 ; RI C- eOde
ESMAL 111.2.40 * Is oped a (1111m)?
my R0.-INVA03jNCU..AE1ID ; If so. treat GPO9 special
ESMAL 41,3.N * Is ope..ds 3 (WMVl
IT R0.-IWvAD0jXC3EG.OINT If so. treat G110 speiml

IVC3XCDP.S 07 R3 <- 0 (mn curl'. PfrioritY)

c 1111 MoPak to keep Ax bits
AND R2.011132 R 2 4- A Index
DO * INVADh.EXC.3EXLA1E Re-translate INm Ax



wE UA.(SlIMP-0 - IMU* 23 ftC.Slattve orterity
0 III M osok to boo AK tt

Ue M.m o 20

I M.M £ a (- 1l

lW 1t.A nCLATf go" and WAlS
NE 103.0 a n 101
ft m t1MAN.Jl"LAIn a eam and XLAR

loV.u g me (- MI

N . 0S.Ne~l-)I a PNO an- MRU
1031.m ; 0 (- 31'

M I0N*, a Ma - zu'
a ^IUUSSW LATE B rmn 4 NLAISZIl'.N -" C - II*

zWAAM ' . .i MATS:
XATi m.I,XLATI.L0ML In ( - RAW. Iat. er NIL

a Wtis tc CJOct iasn't hrel 1f eATE faults. we dont amys stashal

......... -------------------------------.---- --------------------

EAnLYtiEXC h- xcse hanler ftr arly mve se"

Iws under: AC shadow
Trash": TOMS

RLY.E.C: N.C S.] ; sew N In

"M R0401 .60 $ft I* in
pop F4 - Mtuarn Adress

vv uj.T ZVr.m2 Cost lio an DOT

miA N.I.MI aim* up addreSa0t5SS
.IN ft.$." ; shift add ess f"Id tiok

VIMv FN.1MIP.m a Cast Immb Mae a EW
PNN ItSAS. Po etrn US anstcMM (1E I ,A0].40 otom a
POP IP ; batry s~le6r.Yjlxc.uaS

a ISSJlSC -- spt~o hanler ts- san trffer wtlse

; wa uamr: ASaM ea
Trashoss TOM

N.TP.M avc:IaTd
MA O,(11M.A] I ft 00 in

pop mao FS- fltun Addesa
VIM@ ,,TM 13T.0 Cast ae an MlIT
LW It.-~a kft 0 to LS@It
so ReO,1,M g See up oe4 meUN MA." shift madrome filbSack

VTG *.TMILP0 C at bek into an Ip
PIN a N O retumr IPan staab
MM_ CTOM.AOI.@ a satere US
POP if a iSty tnstructlonsSJ~lXCJISl:

XLATIMi[ -- fMeiptnin hadler Per tManlltle fIult

Runs OWNder: A Abeelute Made. inomi
s r esa 1 -4

XLATMt
M i. M S ta i reta1 ista' ia

"M! Q, ,ToIASJ T9" - T tr use
ova at.CTSP.AO am dinOeWU

OM TP.iN : (* carot Prorty ToTAG U.TAS%NTA.f



mow1 RO.CT904.AO] ; 114 (Current priority TRI
LS" ":0. no.1 Pick out ofc. register field
AND Ito.%11.40
ADD Ito. To".1 R Add TOM9 as start of array
M OW CU.AO].RO Load U0 With ouce1

MOE XCALjlA1_XLATE, 43
CALL TWCALL 30 tWIs I A
bIINL Q*.-XLAT1..EX_..NbJINZNG It net. handle no binding

ENTER MAO1 j Enter pair in cache,

-XLATE-ATI
pop R3 413(- Rtuarn p
LS" 1t3.-..1 Shift IF until ~be is LSD
04* R3. 1. R3 Back upna phase
LSll R3. 9. 3 53 (- Failed inst. IP
PUP~ R3 Iput isetry in stack
MOV C1TOM. AO1. @ Rasters data registers
mw (1139AO LI2

WN CTt'93.All R3
po £p ;etyfailed Instruction

XLAT! EC NDINOINg:
MOW C l94.AOl ;0 UNO Failed Instruction
LS" 10. -,(515 CUO 1 SYSv 0101817xts."
cc 01 ( SA -.CPIJITS) I- O 50C-m*s to keap 0pl field
AM4 R2. go.1R2 R2 C- SAT! mode from "pI

MaAL 12.XLATE 0S.J.U Were we In XLA1IOSlj wade?
I'T "0/SLATEWJ IfC W, of S

EQUL R TE 10Were we In XLATLJO..TCICS?
ST No XLATI (ICT To WMNK.)qm= It so. branch
KOlA. 12:EI.ATE tIaE Were we In NLAT!jMThOO mode?
By 10 .XLATE.j=_CJETWSM _! ;m It so, beiach

XLATEJEXC LOCAo seaast must be a data rogisterm asiO TRlP.l 1C Felled XLATE
OC 11111111 U FA Meek to keep Dast field
AN 11.Re.12 RE 086- ee field of MLATE
ADD RE. TOM0. OR RE C- ?Ocomet]~E NL.U meC NIL~4 1(32.0 TeC~ae2 C-NIL
MOV (S0AD *U Restoe data registers
MOVE (1991 .AO ).ll
MOVE CT3ea.AO].ma
PVOE C TE3. AO ]. 3
pop Ip Rtuarn

XLATEMCOSgj M=:
CALL TRMPOZE Juset die for now

XLATEEC P4134CC mooE Apps

XLAEEOC 10 C mOO!
MOW! RI.1 (1 - Falled ELATE
LON 1. 1 Shift Seliurce bits dsuI
AND 11.111,11 just keep seurc bie
A~o l1.I 3.1 I RlII <- Tom0 * Rs
PME (11.AO].N1 RI (- Souarce to
LS" 1.85I to 5M1 Shift Sirlmeda nmer dew
AND 1 .sS3oIDscL.w..s R1 a lst keep nade merg field
"M TIP.R2 R2 C Failed ELATE
C 11111111 Ad U -Walk to keep Oust fieldAND M2.UU2R OR1 C best field of ELATE
ACD MI.1390.12 0 2 TOM 3 0 OuSet (Ibi only[)
MOVE RI lCUAd T39(Ost3 - birta a e erMWEW (1D9. U .1 Reetere, data regsters
MMW (1391.10 .Rl
MMW (1393.AO3.1t3
pop IP Rleturn

ELATEE)E 1 D110 300!
pop 13
LS" 13.-9.13 slhiftP until phoae IsLse

SU 3. 1. 3 Booak up a one wne
LON U..R R3 (-Felled lost. IP

Noot Il holds source to. 5retry IP IS in R3

XLT2_91C SAW -416
PawM III Save away 111
Pull" lot apush 106 an stack
MOV! (0.A3].12 R2 (- Wessage haeder



oc SYSLgJeim NO mo(-ok to heS lef bits
A00 asha;I- Leap,.# .4 ae
ano MUSaU 4- Clam fo comos ond
CIA aTsift m I No (Cam owst ow e.'

PON i~ a ; olA et aq a&s Skao

A Va.I.m ;& St GL8 W *2 *d"

mm EM.A2LUSA ( vr frem.4
- US.Cm1.Amalo Mq. no o bjegs

* ~mujal~w~js ;Lowg

0." No IWAI some as""U
CALL TUWW-CGUTT 6 U( a 4004",u
PO I
FINE T"1."S P; True 1
"we nS.! Distable lntmnuvpU.
__M AI.ft a 110 (- ftlater to otut,
LS oN " M PA. ;83E~SI hit no pewtiom 4"~

L3" St~ a Sf = (- 60 u
AS. T "a a. AN W. Pelpat -I

Ad 11 IN)?? 31)????
* Al -)Cmnt 31 4) Comt"u

A3 7Ml P lo -31 10711

MI M3.CPSTA1U..IP.A2] CeWAea IP 6000eld up IP

* Fill 10 &lows In =at"

PC R3CSTIJO.a a PInt m~ to we objeqt
NM I83.CPPAT1_Ifli.*2

MMq Wft3UAIL31.All

MA UCPOTATI-I.All

a PFill Fa slots in OS.UU%

"MR CTUP.AI.NSI
NOM UCPITATILMI .A23
MW chT1.A~jUa

ow CTM8.SAO],UU

aiu m.TALBR Does Tag * lemi*l%&r
V ma-"T~vC-"ME8JThOS It not. we Uwe miu OR it

"M 00.03 a13 (-This nab MOWr

S= 111.f I SOW noigboogew
cC HNMU~uiFj3TISm Of 4- tO Of LookupbtMW coft

SiM C0.uCI.Auj lead cooed to reply w

mm ~~ iAS .(- IS MSf mthd coc"

wN NIL.US
NS.CT1064, TUPA (- OIL

Np I
POP al I Set al back (Clow, Mp lawq)

O 12.43.42 A (- Offset Post Wach,



aim Is Las Ocrint offst
SUB 00. 2. 3 ftOcrmsn l.1051
[a 10 i1,C2.A0].R Is tis tile id we VMSt?
ST ft.^XLATtjXCJ*M_1CID It so. soe context to list

INL ft.XLAhI XC It OP;I entry not nil. lewapgin
MCV9 ETKHP4.M1. AO
BOMIL O ̂ %LATE EXIC C .LOOP BIf TWC4 is non-nil, lemp,
move R2,cT84AOj Int Is nil. so fill

TM i offset to tolls
emty Place.

XLATIIXC_)C_LCOP:
02S 13.-XLATE EXC-SEA*CH..MCJ If tg~ I. 1 0. leop
WWVI CTDU..A~jiftO
SINIL ft0.^XLAT1tJXC.BT..NW It 1944 net ni I, va found 00

XLATE-EXC ENIII IN CVIIFLCV LIST: epysm nSetbe

066 Al.CCIT.ESIMCIA23 Reseurce - Now"e 10
c vMWAOCVWLQW.LIS? N (- Ovelon list addr

MMV ERN.AOLN ; m(-Cerfev" ow list
MOV ao.ECCNm NEXTr WNTUT7 2 "ag cwt a rest of IIs&
MOV C(u0ACTJ.AsjQ0 W N - Centimit-ID
MOVE NA.CP2.A03 Ofloe list (- Centewt-ID
N ^XLAEEKr'AUL.ADPIUETOO M i I for Mathed

EI.AT_EXC GOT WONI:
-& ETl4.AOLI5t 12 (- emty alet affse

MOVE RI.CU.A03 ; ill I C 10 itil "DAled to
XLATIPFC POSMNC HC ID:

A&o msri.02 ;point offset to wait list
MOV t15 .A03.NG " (- (car Viiist)

MV [CATIV.A2.13 U3 (- Centaft-ID
MVE 1Mar.E0.:j Point wait-list to cantawt
MOVE N0. E MT-NEXT CWTEXT. A2 3 Point chlild Moat to tile

rest af wasit-list (or ail)

No Me wehava Sot up thle wa It IsI t for thle inthod.
WO e a to ftl IIOf f A Methlod ralaaat to tile ll11~in

*node of tile methoed in question (1C in Oki).

XLATLAXCj*IL..OP6I3JETCD:

CALL. T ICTNCAI ; 1 (-Nosdnmer tof1

POP RI Resteo ID
CC MOE: (NThCOEGUSTJE0((lYSLNj$f)ISI1...WC

I R3.N10 Send daet noe 9 A mesage
RM NN.5R 43 (- This noea nmer
SOME 11.R3 Send satsed-IS A this nodsaf
lUFImP) Wait for Methed reply

XLATIJXCVdD:

cc IF:VU(J~C(Y LNII
0C 1P3 atAII ""YJU.Td sLIJ) I USSA.
oc 1111 IJU (WJIT(SILIt1h - IWINSY
0C IF:YIS (WVJT(1S .EJTS ILGANS
0C IP: 3 I(ML..((B

cc IDSYJS(PI L(II ITS) I CUM1

cc I ~Y..C1.MIXA~N(SYS LNAT)
0C IPSYUIIUImT(Y.LI I INOR
0C IF:YJ( UCCW.USU
cc IFaV~S(PY~IT(1.LLIS
0C IptSLII(W !L(SSLSII

CC IpaIIJS (UTJIL(M_~IN U IP
CC IP:SYSMU(ST!I((Y.L J) <8 t
0C IF: IYS)UI( UVJIT( I UTS IC
C If: IY $AI (SPV*WT(iSLINI

CDC IP:lVSM(9" ItYAA.(IILNII

CC IP:USV.jWUI (STYJ.AUL U$h"-LEN-IS
cc tP:SYS.AW I (IITY FAW L((YLZN_@M)
c ZP:SYIMUI (STY AULU((YI LEN WTS)



00 ZP:S5ASSI (.9TYAULT((SYSLENSfl5)
a0 ZP:SYSJISI(94TY AMT((SYS-LEN IS)
D0 IPtS5.I-CSd FAUTMY LETN- T3)USLE ~
cc W:if(t n.I T1W(W'IU.ITS
00 Zp5': UIA.

00 ZP:LAt ( TW4
o ,c fps S.~r

00 IP:(IML1(SYS1.j.JZT

Dc PISYS.*SCPYNML(

00 IPi...WO C'LS (i? sNU

00 ZPSVS..)IDfrr* Sj(UMn1U~.
00 * YSLAu S-l ((5T-VdohGWM"ILUm3
00 Z~SV."U I (VY..NATL0S.L.3V
00 lp ZP:SNS.I Y.)A( j.TS)!

00 IP:5I. IU y4('53.L333I

00 PSS.1( ()CLL((Y.LUU

cc IPSYS RISY.~L(SS.SKS
0c IP:SYSI ( me"<LL5YLAIh
00 Zpi8 II (OPTICtAS~ WEU
00 ZP: ?.II (EWTVI0((SYS)jZ)

amContait

4m-wzm no LN?:(I<<fflO
NAuns oc 0 INT:(PAMIEND - 1024)

mot c oo....oosgoooee
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-m'4'AWl TMe

HEAD~t

DEAD(i n ~ * e ~ tin gam

CALL (MOajd~ouL*

SEND (ubWfMiww4<Smiuplbu

REPLY (ca(.mg -~ "Joa~e its msdf

dotM be nmm4c,at$cm

T~M<Qorm"dbw. Re

NEWJWFIMD~~ AM.,&. MMW Az*B
slm a'ebbi ojm

N~EW (c*~~

Wr~wr~xowrmrr (c Q bw l =Pin~ to

MAIE-OLcr 
MuOuM dig)hbeel objet vIa ED

4 0bU~' mob m~o



SYSOm Cal.

XCALL Xcal omuine numbr in Mt Calls one of the routines defmd in
the extended call vecm oable. Thi
was unpiemmed sm the CALL
vecto table was minig out of room.

SWEEP CoMacts the beep.

NEWcotNIMx Sine of Owe$pusain uM Tis wona cream a new comaext
object withi N. words of user space
ad MOhn t coext C Addre in Al
mdA2. RO is fmd.

NEW Sin ofobjec.n0 Cre a new object of size O and
Close of object in RI class R1, and rems the objects IDin R. RI gts trhad.

IDTO..ODE Object MD inR1 Reus a likely node for the object
with RI i beoninRli.

MLLOC Block saime in 30 Allocam 30 wards of physical
memory ad turns the address in
Al

FREECONTIXT Comex ID to he in IDI arees the context with ID in [Dl,
posibly placing it on the context
fim list.

FREESPECIFEDONlEXT
CoUSZZEDK~SI m P n 1 ees d canmxwidih Min RO,

posibly plcin it on die context
A= lis This wauesRO id RI.

cum 01e-re a new ID, and etuns the
ID in RO.

VERSION Reas the OS venmio number in
3O. where te high 16 bits hold die
m.r va l and the low 16 bits the
mir ve.

XF=JD Comm ID to m in N Tuanu control to the context whose
ID isi, Thi ova nmmms.

XFERKADDR ComU addm in Al Tmaers cm l -mo do comxt whom
ID is in AL This never mm

BEAT-PEEK IDl hia inFis1 Din 30ltia flaindafimfID so seghfor Is l dloet in*ARATussmore. A lows
Bss of RAT tb in 2 t m md ftrm dwe suo the ID

inRI is omd Whe mfounmd. theoffset
km ton sm of the BRAT wher this
for"d, NIL is mm d.



"To

BMT-AiRZ.
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